cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A132233 Primes congruent to 13 (mod 30).

Original entry on oeis.org

13, 43, 73, 103, 163, 193, 223, 283, 313, 373, 433, 463, 523, 613, 643, 673, 733, 823, 853, 883, 1033, 1063, 1093, 1123, 1153, 1213, 1303, 1423, 1453, 1483, 1543, 1663, 1693, 1723, 1753, 1783, 1873, 1933, 1993, 2053, 2083, 2113, 2143, 2203, 2293, 2383
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Comments

Primes ending in 3 with (SOD-1)/3 integer where SOD is sum of digits. - Ki Punches
Subsequence of primes of A082369. - Michel Marcus, Jan 23 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3000) | p mod 30 eq 13 ]; // Vincenzo Librandi, Aug 14 2012
    
  • Maple
    select(isprime, [seq(30*i+13,i=0..1000)]); # Robert Israel, Jan 24 2016
  • Mathematica
    Select[Prime[Range[1000]],MemberQ[{13},Mod[#,30]]&] (* Vincenzo Librandi, Aug 14 2012 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if(p % 30 == 13, print1(p, ", "))); \\ Altug Alkan, Jan 23 2016

Formula

a(n) = A158746(n)*30 + 13. - Ray Chandler, Apr 07 2009
Intersection of A030431 and A002476. - Ray Chandler, Apr 07 2009

Extensions

Extended by Ray Chandler, Apr 07 2009

A267985 Numbers congruent to {7, 13} mod 30.

Original entry on oeis.org

7, 13, 37, 43, 67, 73, 97, 103, 127, 133, 157, 163, 187, 193, 217, 223, 247, 253, 277, 283, 307, 313, 337, 343, 367, 373, 397, 403, 427, 433, 457, 463, 487, 493, 517, 523, 547, 553, 577, 583, 607, 613, 637, 643, 667, 673, 697, 703, 727, 733, 757, 763
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jan 23 2016

Keywords

Comments

Union of A128471 and A082369.
For all k >= 1 the numbers 2^k - a(n) and a(n)*2^k - 1 do not form a pair of primes, where n is any positive integer.

Crossrefs

Programs

  • Magma
    [n: n in [0..763] | n mod 30 in {7, 13}];
    
  • Mathematica
    LinearRecurrence[{1, 1, -1}, {7, 13, 37}, 52]
  • PARI
    Vec(x*(7 + 6*x + 17*x^2)/((1 + x)*(1 - x)^2) + O(x^53))

Formula

a(n) = a(n-1) + a(n-2) - a(n-3), n >= 4.
G.f.: x*(7 + 6*x + 17*x^2)/((1 + x)*(1 - x)^2).
a(n) = a(n-2) + 30.
a(n) = 10*(3*n - 4) - a(n-1).
From Colin Barker, Jan 24 2016: (Start)
a(n) = (30*n-9*(-1)^n-25)/2 for n>0.
a(n) = 15*n-17 for n>0 and even.
a(n) = 15*n-8 for n odd.
(End)
E.g.f.: 17 + ((30*x - 25)*exp(x) - 9*exp(-x))/2. - David Lovler, Sep 10 2022

Extensions

Comment corrected by Philippe Deléham, Nov 28 2016

A271114 Expansion of (1+x)*(2+x)/(1-x)^2.

Original entry on oeis.org

2, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, 163, 169, 175, 181, 187, 193, 199, 205, 211, 217, 223, 229, 235, 241, 247, 253, 259, 265, 271, 277, 283, 289, 295, 301, 307, 313, 319, 325
Offset: 0

Views

Author

Colin Barker, Mar 31 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{2}, LinearRecurrence[{2, -1}, {7, 13}, 100]] (* G. C. Greubel, Mar 31 2016 *)
  • PARI
    Vec((1+x)*(2+x)/(1-x)^2 + O(x^70))

Formula

G.f.: (1+x)*(2+x)/(1-x)^2.
a(n) = A270700(n)/6.
a(n) = 6*n+1 = A016921(n) for n>0.
a(n) = 2*a(n-1)-a(n-2) for n>2.
E.g.f.: 1 + (1+6*x)*exp(x). - G. C. Greubel, Mar 31 2016
From Bruno Berselli and G. C. Greubel, Mar 31 2016: (Start)
a(5*m+1) = 30*m + 7 = A132231(m+1).
a(5*m+2) = 30*m + 13 = A082369(m+1).
a(5*m+3) = 30*m + 19 = A156376(m).
a(5*m+4) = 30*m + 25 = 5*A016969(m).
a(5*m+5) = 30*m + 31 = A128470(m+1). (End)
a(n) = A100764(n+3) for n >= 1. - Georg Fischer, Oct 30 2018

A332243 Starhex honeycomb numbers: a(n) = 13 + 60*n + 60*n^2.

Original entry on oeis.org

13, 133, 373, 733, 1213, 1813, 2533, 3373, 4333, 5413, 6613, 7933, 9373, 10933, 12613, 14413, 16333, 18373, 20533, 22813, 25213, 27733, 30373, 33133, 36013, 39013, 42133, 45373, 48733, 52213, 55813, 59533, 63373, 67333, 71413, 75613, 79933, 84373
Offset: 0

Views

Author

John Elias, Feb 07 2020

Keywords

Examples

			Example: a(2) = 13 + 60*2 + 60*2^2 = 373.
Illustration of initial terms:
.                               0
.                            0 0 0 0
.                             0 0 0
.                      0     0 0 0 0     0
.                   0 0 0 0 * * 0 * * 0 0 0 0
.                    0 0 0 * * * * * * 0 0 0
.                   0 0 0 0 * * 0 * * 0 0 0 0
.                      0 * * 0 0 0 0 * * 0
.                       * * * 0 0 0 * * *
.                      0 * * 0 0 0 0 * * 0
.                   0 0 0 0 * * 0 * * 0 0 0 0
.                    0 0 0 * * * * * * 0 0 0
.    0              0 0 0 0 * * 0 * * 0 0 0 0
. 0 * * 0              0     0 0 0 0     0
.  * 0 *                      0 0 0
. 0 * * 0                    0 0 0 0
.    0                          0
.
.    13                         133
		

References

  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 20.

Crossrefs

Subsequence of A082369: cf. formula.

Programs

Formula

a(n) = 12*(5*n*(n + 1) + 1) + 1.
From Stefano Spezia, Feb 07 2020: (Start)
O.g.f.: (13 + 94*x + 13*x^2)/(1 - x)^3.
E.g.f.: exp(x)*(13 + 120*x + 60*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-2) for n > 2. (End)
a(n) = A082369(A001844(n)). - M. F. Hasler, Jun 09 2023

A248474 Numbers congruent to 13 or 17 mod 30.

Original entry on oeis.org

13, 17, 43, 47, 73, 77, 103, 107, 133, 137, 163, 167, 193, 197, 223, 227, 253, 257, 283, 287, 313, 317, 343, 347, 373, 377, 403, 407, 433, 437, 463, 467, 493, 497, 523, 527, 553, 557, 583, 587, 613, 617, 643, 647, 673, 677, 703, 707, 733, 737, 763, 767, 793, 797
Offset: 1

Views

Author

Karl V. Keller, Jr., Oct 06 2014

Keywords

Comments

The combination of A082369(30*n+13) and A128468(30*n+17) is the base sequence for A140533(Primes congruent to 13 or 17 mod 30).

Crossrefs

Cf. A082369 (30*n+13), A128468 (30*n+17).
Cf. A039949 (Primes of the form 30n-13), A132233 (Primes congruent to 13 mod 30), A140533 (Primes congruent to 13 or 17 mod 30).

Programs

  • Mathematica
    Flatten[Table[{15n - 2, 15n + 2}, {n, 1, 41, 2}]] (* Alonso del Arte, Oct 06 2014 *)
  • PARI
    Vec(x*(13*x^2+4*x+13)/((x-1)^2*(x+1)) + O(x^100)) \\ Colin Barker, Oct 07 2014
  • Python
    for n in range(1,101):
      print (n*30-17),
      print (n*30-13),
    

Formula

From Colin Barker, Oct 07 2014: (Start)
a(n) = (-15-11*(-1)^n+30*n)/2.
a(n) = a(n-1)+a(n-2)-a(n-3).
G.f.: x*(13*x^2+4*x+13) / ((x-1)^2*(x+1)). (End)
E.g.f.: 13 + ((30*x - 15)*exp(x) - 11*exp(-x))/2. - David Lovler, Sep 10 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2*(5+sqrt(5)))+sqrt(3)-sqrt(15))*Pi / (30*(sqrt(6*(5+sqrt(5)))+sqrt(5)-1)). - Amiram Eldar, Jul 30 2024

A375644 Products of prime 7-tuples (p, p+2, p+6, p+8, p+12, p+18, p+20) where p = A022009(n).

Original entry on oeis.org

955049953, 3431222498061314276004949808559579043, 1592283266230831269579139040471681157252043, 33803301949073251156918712397722608580666560525843, 241497625199060263864928600741562805703424517481233, 742885427216897360827893410354065761987031315800313, 1822898255205545910397244861266569904193155136678473
Offset: 1

Views

Author

Michael De Vlieger, Aug 23 2024

Keywords

Comments

Primes p in A022009 belong to 11 (mod 210), therefore a(n) is congruent to the product of residues {11, 13, 17, 19, 23, 29, 31} (mod 210), hence a(n) is congruent to 193 (mod 210).
Gaps between prime factors are {2, 4, 2, 4, 6, 2}.

Crossrefs

Programs

  • Mathematica
    Map[Times @@ NextPrime[#, Range[0, 6]] &, Select[Prime@ Range[2^20], AllTrue[# + {2, 6, 8, 12, 18, 20}, PrimeQ] &]]
Showing 1-6 of 6 results.