cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A267984 Numbers congruent to {17, 23} mod 30.

Original entry on oeis.org

17, 23, 47, 53, 77, 83, 107, 113, 137, 143, 167, 173, 197, 203, 227, 233, 257, 263, 287, 293, 317, 323, 347, 353, 377, 383, 407, 413, 437, 443, 467, 473, 497, 503, 527, 533, 557, 563, 587, 593, 617, 623, 647, 653, 677, 683, 707, 713, 737, 743, 767, 773
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jan 23 2016

Keywords

Comments

Union of A128468 and A128473.
For all k >= 1 the numbers 2^k + a(n) and a(n)*2^k + 1 do not form a pair of primes, where n is any positive integer.

Crossrefs

Programs

  • Magma
    [n: n in [0..773] | n mod 30 in {17, 23}];
    
  • Mathematica
    LinearRecurrence[{1, 1, -1}, {17, 23, 47}, 52]
  • PARI
    Vec(x*(17 + 6*x + 7*x^2)/((1 + x)*(1 - x)^2) + O(x^53))

Formula

a(n) = a(n-1) + a(n-2) - a(n-3), n >= 4.
G.f.: x*(17 + 6*x + 7*x^2)/((1 + x)*(1 - x)^2).
a(n) = a(n-2) + 30.
a(n) = 10*(3*n - 2) - a(n-1).
From Colin Barker, Jan 24 2016: (Start)
a(n) = (30*n - 9*(-1)^n - 5)/2 for n>0.
a(n) = 15*n - 7 for n>0 and even.
a(n) = 15*n + 2 for n odd.
(End)
E.g.f.: 7 + ((30*x - 5)*exp(x) - 9*exp(-x))/2. - David Lovler, Sep 10 2022

A296716 Numbers congruent to {7, 11, 13, 29} mod 30.

Original entry on oeis.org

7, 11, 13, 29, 37, 41, 43, 59, 67, 71, 73, 89, 97, 101, 103, 119, 127, 131, 133, 149, 157, 161, 163, 179, 187, 191, 193, 209, 217, 221, 223, 239, 247, 251, 253, 269, 277, 281, 283, 299, 307, 311, 313, 329, 337, 341, 343, 359, 367, 371, 373, 389, 397, 401, 403
Offset: 1

Views

Author

Arkadiusz Wesolowski, Dec 19 2017

Keywords

Comments

For any m >= 0, if F(m) = 2^(2^m) + 1 has a factor of the form b = a(n)*2^k + 1 with k >= m + 2 and n >= 1, then the integer F(m)/b is congruent to 13 or 19 mod 30.

Crossrefs

Programs

  • Magma
    [n: n in [0..403] | n mod 30 in {7, 11, 13, 29}];
    
  • Mathematica
    LinearRecurrence[{1, 0, 0, 1, -1}, {7, 11, 13, 29, 37}, 60]
  • PARI
    Vec(x*(7 + 4*x + 2*x^2 + 16*x^3 + x^4)/((1 + x)*(1 + x^2)*(1 - x)^2 + O(x^55)))

Formula

a(n) = a(n-1) + a(n-4) - a(n-5), n >= 6.
a(n) = a(n-4) + 30.
G.f.: x*(7 + 4*x + 2*x^2 + 16*x^3 + x^4)/((1 + x)*(1 + x^2)*(1 - x)^2).
a(n) = (-15 + 5*(-1)^n + (3+9*i)*(-i)^n + (3-9*i)*i^n + 30*n) / 4 where i=sqrt(-1). - Colin Barker, Dec 19 2017
E.g.f.: (5*(e^(-x) + (6*x - 3)*e^x) + 6*cos(x) + 18*sin(x))/4. - Iain Fox, Dec 19 2017

A267943 Numbers n such that 2^n - 3 and 3*2^n - 1 are both prime.

Original entry on oeis.org

3, 4, 6, 94
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jan 22 2016

Keywords

Comments

The intersection of A002235 and A050414 is not empty (3 does not belong to A267985).

Examples

			a(3) = 6 because 2^6 - 3 = 61 and 3*2^6 - 1 = 191 are both prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [2..94] | IsPrime(2^n-3) and IsPrime(3*2^n-1)];
    
  • PARI
    isok(n) = isprime(2^n-3) && isprime(3*2^n-1);

Formula

A002235 INTERSECT A050414.
Showing 1-3 of 3 results.