A267985 Numbers congruent to {7, 13} mod 30.
7, 13, 37, 43, 67, 73, 97, 103, 127, 133, 157, 163, 187, 193, 217, 223, 247, 253, 277, 283, 307, 313, 337, 343, 367, 373, 397, 403, 427, 433, 457, 463, 487, 493, 517, 523, 547, 553, 577, 583, 607, 613, 637, 643, 667, 673, 697, 703, 727, 733, 757, 763
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
[n: n in [0..763] | n mod 30 in {7, 13}];
-
Mathematica
LinearRecurrence[{1, 1, -1}, {7, 13, 37}, 52]
-
PARI
Vec(x*(7 + 6*x + 17*x^2)/((1 + x)*(1 - x)^2) + O(x^53))
Formula
a(n) = a(n-1) + a(n-2) - a(n-3), n >= 4.
G.f.: x*(7 + 6*x + 17*x^2)/((1 + x)*(1 - x)^2).
a(n) = a(n-2) + 30.
a(n) = 10*(3*n - 4) - a(n-1).
From Colin Barker, Jan 24 2016: (Start)
a(n) = (30*n-9*(-1)^n-25)/2 for n>0.
a(n) = 15*n-17 for n>0 and even.
a(n) = 15*n-8 for n odd.
(End)
E.g.f.: 17 + ((30*x - 25)*exp(x) - 9*exp(-x))/2. - David Lovler, Sep 10 2022
Extensions
Comment corrected by Philippe Deléham, Nov 28 2016
Comments