cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A267985 Numbers congruent to {7, 13} mod 30.

Original entry on oeis.org

7, 13, 37, 43, 67, 73, 97, 103, 127, 133, 157, 163, 187, 193, 217, 223, 247, 253, 277, 283, 307, 313, 337, 343, 367, 373, 397, 403, 427, 433, 457, 463, 487, 493, 517, 523, 547, 553, 577, 583, 607, 613, 637, 643, 667, 673, 697, 703, 727, 733, 757, 763
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jan 23 2016

Keywords

Comments

Union of A128471 and A082369.
For all k >= 1 the numbers 2^k - a(n) and a(n)*2^k - 1 do not form a pair of primes, where n is any positive integer.

Crossrefs

Programs

  • Magma
    [n: n in [0..763] | n mod 30 in {7, 13}];
    
  • Mathematica
    LinearRecurrence[{1, 1, -1}, {7, 13, 37}, 52]
  • PARI
    Vec(x*(7 + 6*x + 17*x^2)/((1 + x)*(1 - x)^2) + O(x^53))

Formula

a(n) = a(n-1) + a(n-2) - a(n-3), n >= 4.
G.f.: x*(7 + 6*x + 17*x^2)/((1 + x)*(1 - x)^2).
a(n) = a(n-2) + 30.
a(n) = 10*(3*n - 4) - a(n-1).
From Colin Barker, Jan 24 2016: (Start)
a(n) = (30*n-9*(-1)^n-25)/2 for n>0.
a(n) = 15*n-17 for n>0 and even.
a(n) = 15*n-8 for n odd.
(End)
E.g.f.: 17 + ((30*x - 25)*exp(x) - 9*exp(-x))/2. - David Lovler, Sep 10 2022

Extensions

Comment corrected by Philippe Deléham, Nov 28 2016

A238739 Numbers n such that 2^n + 3 and 3*2^n + 1 are both prime.

Original entry on oeis.org

1, 2, 6, 12, 18, 30
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 04 2014

Keywords

Comments

Intersection of A057732 and A002253. - Joerg Arndt, Mar 04 2014
By checking primality of 2^n+3 for values n in A002253, it follows a(7) > 7033641. - Giovanni Resta, Mar 08 2014
Exponents of second Fermat prime pairs. - Juri-Stepan Gerasimov, Mar 08 2014
From Juri-Stepan Gerasimov, Mar 04 2014: (Start)
If prime pair {2^n + (2k+1), (2k+1)*2^n + 1} is called a Fermat prime pair, then numbers n such that 2^n + (2k + 1) and (2k + 1)*2^n + 1 are both prime:
for k = 0: 0, 1, 2, 4, 8, 16, ... the exponents first Fermat prime pairs;
for k = 1: 1, 2, 6, 12, 18, 30, ... the exponents second Fermat prime pairs;
for k = 2: 1, 3, ... the exponents third Fermat prime pairs;
for k = 3: 2, 4, 6, 20, 174, ... the exponents fourth Fermat prime pairs;
for k = 4: 1, 2, 3, 6, 7, ... the exponents fifth Fermat prime pairs;
for k = 5: 1, 3, 5, 7, ... the exponents sixth Fermat prime pairs;
for k = 6: 2, 8, 20, ... the exponents seventh Fermat prime pairs;
for k = 7: 1, 2, 4, 10, 12, ... the exponents eighth Fermat prime pairs;
for k = 8:
for k = 9: 6, ... the exponents tenth Fermat prime pairs;
for k = 10: 1, 4, 5, 7, 16, ... the exponents eleventh Fermat prime pairs;
for k = 11:
for k = 12: 2, 4, 6, 10, 20, 22, ...the exponents thirteenth Fermat prime pairs;
for k = 13: 2, 4, 16, 40, 44, ... the exponents fourteenth Fermat prime pairs;
for k = 14: 1, 3, 5, 27, 43, ... the exponents fifteenth Fermat prime pairs.
Semiprimes of the form (2^m+2k+1)*((2k+1)*2^m+1): 4, 9, 25, 35, 77, 91, 209, 289, 319, 481, 527, 533, 901, 989, ...
(End)

Examples

			a(1) = 1 because 2^1 + 3 = 5 and 3*2^1 + 1 = 7 are both prime,
a(2) = 2 because 2^2 + 3 = 7 and 3^2^2 + 1 = 13 are both prime,
a(3) = 6 because 2^6 + 3 = 67 and 3*2^6 + 1 = 193 are both prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..30] | IsPrime(2^n+3) and IsPrime(3*2^n+1)]; // Arkadiusz Wesolowski, Jan 23 2016
  • Mathematica
    Select[Range[30],AllTrue[{2^#+3,3*2^#+1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 08 2015 *)
  • PARI
    isok(n) = isprime(2^n + 3) && isprime(3*2^n + 1); \\ Michel Marcus, Mar 04 2014
    
Showing 1-2 of 2 results.