A082375 Irregular triangle read by rows: row n begins with n and decreases by 2 until 0 or 1 is reached, for n >= 0.
0, 1, 2, 0, 3, 1, 4, 2, 0, 5, 3, 1, 6, 4, 2, 0, 7, 5, 3, 1, 8, 6, 4, 2, 0, 9, 7, 5, 3, 1, 10, 8, 6, 4, 2, 0, 11, 9, 7, 5, 3, 1, 12, 10, 8, 6, 4, 2, 0, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8, 6, 4, 2, 0, 15, 13, 11, 9, 7, 5, 3, 1, 16, 14, 12, 10, 8, 6, 4, 2, 0, 17, 15, 13, 11, 9, 7, 5, 3, 1, 18, 16, 14
Offset: 0
Examples
The irregular triangle T(n, m) begins: n\m 0 1 2 3 4 5 ... 0: 0 1: 1 2: 2 0 3: 3 1 4: 4 2 0 5: 5 3 1 6: 6 4 2 0 7: 7 5 3 1 8: 8 6 4 2 0 9: 9 7 5 3 1 10: 10 8 6 4 2 0 ...
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Interspersions and Dispersions.
- Clark Kimberling, Interspersions and dispersions, Proceedings of the American Mathematical Society, 117 (1993) 313-321.
Programs
-
Mathematica
Flatten[Table[Range[n,0,-2],{n,0,20}]] (* Harvey P. Dale, Apr 03 2019 *) lst = {}; Do[If[IntegerQ[d=Sqrt[b^2-4c]], AppendTo[lst, d]], {b, 1, 20}, {c, 1, b^2/4}]; lst (* Frank M Jackson, Jan 20 2024 *)
-
PARI
a(n)=local(m); if(n<0,0,m=sqrtint(1+4*n); m-1-(1+4*n-m^2)\2)
Formula
T(n, m) = n - 2*m, m = 0, 1, ..., floor(n/2), n >= 0 (see the name and programs). - Wolfdieter Lang, Feb 17 2020
Comments