cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082395 Number of shifted Young tableaux with height <= 3.

Original entry on oeis.org

1, 1, 2, 3, 6, 12, 27, 63, 154, 386, 989, 2574, 6787, 18085, 48622, 131719, 359194, 985186, 2715973, 7521568, 20915257, 58373587, 163462816, 459136810, 1293223231, 3651864607, 10336625732, 29321683083, 83344398534, 237344961292, 677087183363, 1934730432503
Offset: 1

Views

Author

Keywords

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 12*x^6 + 27*x^7 + 63*x^8 + 154*x^9 + 386*x^10 + 989*x^11 + 2574*x^12 + ...
		

Crossrefs

Partial sums of A005043.
Cf. A363555.

Programs

  • Mathematica
    Table[Sum[(-1)^(k+1)*Binomial[n, k]*Binomial[k-1, Floor[k/2]],{k,1,n}],{n,1,20}]
    RecurrenceTable[{3*(n-2)*a[n-3]+(2-n)*a[n-2]+(4-3n)*a[n-1]+n*a[n]==0,a[1]==1,a[2]==1,a[3]==2},a,{n,20}] (* Vaclav Kotesovec, Oct 02 2012 *)
  • Sage
    def A082395():
        a, b, s, n = 1, 0, 1, 1
        yield a
        while True:
            s += b
            yield s
            n += 1
            a, b = b, (2*b+3*a)*(n-1)/(n+1)
    A082395_list = A082395()
    [next(A082395_list) for i in range(30)] # Peter Luschny, Sep 24 2014

Formula

a(n) = Sum_{k=1..n}(-1)^(k+1)*binomial(n, k)*binomial(k-1, floor(k/2)). - Vladeta Jovovic, Sep 18 2003
Recurrence: 3*(n-2)*a(n-3)+(2-n)*a(n-2)+(4-3*n)*a(n-1)+n*a(n)=0. - Vaclav Kotesovec, Oct 02 2012
Asymptotic: a(n) ~ 3^(n+3/2)/(16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 02 2012
From Paul D. Hanna, Jul 08 2023: (Start)
G.f. A(x) = (1 + x - sqrt(1 - 2*x - 3*x^2))/(2*(1-x^2)).
G.f. A(x) = A(x)^2 + (1 - A(x)^2)*x + (A(x) - A(x)^2)*x^2 + A(x)^2*x^3.
G.f. A(x) satisfies 0 = Sum_{n>=0} (-1)^n * x^(n*(n-3)/2) * A(x)^n / Product_{k=0..n+1} (1 - x^k*A(x)). (End)

Extensions

More terms from Vladeta Jovovic, Sep 18 2003