cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082397 Number of directed aggregates of height <= 2 with n cells.

Original entry on oeis.org

1, 2, 5, 11, 26, 62, 153, 385, 988, 2573, 6786, 18084, 48621, 131718, 359193, 985185, 2715972, 7521567, 20915256, 58373586, 163462815, 459136809, 1293223230, 3651864606, 10336625731, 29321683082, 83344398533, 237344961291
Offset: 1

Views

Author

Keywords

Comments

Conjecture: partial sums of A342912. - Sean A. Irvine, Jul 16 2022

References

  • Fouad Ibn-Majdoub-Hassani. Combinatoire de polyominos et des tableaux décalés oscillants. Thèse de Doctorat. 1991. Laboratoire de Recherche en Informatique, Université Paris-Sud XI, France.

Programs

  • Maple
    A082397 := proc(n)
        add( (-1)^(k+1)*binomial(n+1,k+1)*binomial(k,floor((k-1)/2)),k=1..n) ;
    end proc:
    seq(A082397(n),n=1..30) ; # R. J. Mathar, Jun 27 2022
  • Mathematica
    Table[Sum[(-1)^(i+1)*Binomial[k+1, i+1] Binomial[i, Floor[(i-1)/2]], {i,1,k}], {k,1,20}] (* Rigoberto Florez, Dec 10 2022 *)
  • Python
    import math
    def Sum(k):
        S= sum((-1)**(i+1)*math.comb(k,i+1)*math.comb(i,math.floor((i-1)/2)) for i in range(1,k))
        return S
    for i in range (2,20): print(Sum(i))
    # Rigoberto Florez, Dec 10 2022

Formula

a(n) = Sum_{k=1..n}(-1)^(k+1)*binomial(n+1, k+1)*binomial(k, floor((k-1)/2)). E.g.f.: -exp(x)*int(-BesselI(1, 2*x)+BesselI(2, 2*x), x)-exp(x)*(-BesselI(1, 2*x)+BesselI(2, 2*x)). - Vladeta Jovovic, Sep 18 2003
Conjecture D-finite with recurrence +(n+2)*a(n) +(-3*n-2)*a(n-1) -n*a(n-2) +3*n*a(n-3)=0. - R. J. Mathar, Jun 27 2022

Extensions

More terms from Vladeta Jovovic, Sep 18 2003