cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082476 a(n) = Sum_{d|n} mu(d)^2*tau(d)^2.

Original entry on oeis.org

1, 5, 5, 5, 5, 25, 5, 5, 5, 25, 5, 25, 5, 25, 25, 5, 5, 25, 5, 25, 25, 25, 5, 25, 5, 25, 5, 25, 5, 125, 5, 5, 25, 25, 25, 25, 5, 25, 25, 25, 5, 125, 5, 25, 25, 25, 5, 25, 5, 25, 25, 25, 5, 25, 25, 25, 25, 25, 5, 125, 5, 25, 25, 5, 25, 125, 5, 25, 25, 125, 5, 25, 5, 25, 25, 25, 25, 125
Offset: 1

Views

Author

Benoit Cloitre, Apr 27 2003

Keywords

Comments

More generally : sum(d|n, mu(d)^2*tau(d)^m) = (2^m+1)^omega(n).

Crossrefs

Programs

  • Mathematica
    tau[1, n_] := 1; SetAttributes[tau, Listable];
    tau[k_, n_] := Plus @@ (tau[k - 1, Divisors[n]]) /; k > 1;
    A082476[n_] := Abs[DivisorSum[n, MoebiusMu[ # ]*tau[3, #^2] &]]; (* Enrique Pérez Herrero, Mar 29 2010 *)
    (* or more easy *)
    A082476[n_] := 5^PrimeNu[n] (* Enrique Pérez Herrero, Mar 29 2010 *)
  • PARI
    a(n)=5^omega(n)
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (4*X+1)/(1-X))[n], ", ")) \\ Vaclav Kotesovec, Feb 28 2023

Formula

a(n) = 5^omega(n); multiplicative with a(p^e)=5.
a(n) = abs(sum(d|n, mu(d)*tau_3(d^2))), where tau_3 is A007425. - Enrique Pérez Herrero, Mar 29 2010
a(n) = tau_5(rad(n)) = A061200(A007947(n)). - Enrique Pérez Herrero, Jun 24 2010
a(n) = A000351(A001221(n)). - Antti Karttunen, Jul 26 2017
From Vaclav Kotesovec, Feb 28 2023: (Start)
Dirichlet g.f.: Product_{primes p} (1 + 5/(p^s - 1)).
Dirichlet g.f.: zeta(s)^5 * Product_{primes p} (1 - 10/p^(2*s) + 20/p^(3*s) - 15/p^(4*s) + 4/p^(5*s)), (with a product that converges for s=1). (End)