cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082663 Odd semiprimes pq with p < q < 2p.

Original entry on oeis.org

15, 35, 77, 91, 143, 187, 209, 221, 247, 299, 323, 391, 437, 493, 527, 551, 589, 667, 703, 713, 851, 899, 943, 989, 1073, 1147, 1189, 1247, 1271, 1333, 1363, 1457, 1517, 1537, 1591, 1643, 1739, 1763, 1829, 1891, 1927, 1961, 2021, 2173, 2183, 2257, 2279
Offset: 1

Views

Author

Naohiro Nomoto, May 18 2003

Keywords

Comments

Numbers k such that A082647(k) = A000005(k) - 1 = 3.
A082647(p^2) = A000005(p^2) - 1 = 2, where p is odd prime.
Numbers n such that A229964(n) = 2. - Eric M. Schmidt, Oct 05 2013

Crossrefs

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}&&FactorInteger[n][[1,1]]>2&&Floor[FactorInteger[n][[2,1]]/FactorInteger[n][[1,1]]]==1;lst={};Do[If[f[n],AppendTo[lst,n]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, May 19 2010 *)
    pq2pQ[n_]:=Module[{fi=FactorInteger[n][[All,1]]},PrimeOmega[n]==2 && fi[[1]]< fi[[2]]< 2fi[[1]]]; Select[Range[1,2301,2],pq2pQ]//Quiet (* Harvey P. Dale, Jul 31 2021 *)
  • PARI
    list(lim)=my(v=List()); forprime(p=3, sqrtint(lim\=1), forprime(q=p+1,min(lim\p,2*p), listput(v,p*q))); Set(v) \\ Charles R Greathouse IV, Mar 03 2021

Extensions

New name based on a Jan 23 2004 comment from Vladeta Jovovic - Charles R Greathouse IV, Mar 03 2021