A082695 Decimal expansion of zeta(2)*zeta(3)/zeta(6).
1, 9, 4, 3, 5, 9, 6, 4, 3, 6, 8, 2, 0, 7, 5, 9, 2, 0, 5, 0, 5, 7, 0, 7, 0, 3, 6, 2, 5, 7, 4, 7, 6, 3, 4, 3, 7, 1, 8, 7, 8, 5, 8, 5, 0, 1, 7, 6, 7, 8, 0, 5, 7, 1, 6, 0, 2, 6, 6, 3, 5, 6, 8, 8, 9, 0, 0, 5, 3, 4, 9, 5, 0, 6, 9, 3, 5, 5, 4, 0, 5, 3, 9, 4, 8, 1, 7, 9, 1, 0, 0, 8, 2, 1, 1, 1, 1, 3, 0, 1, 0, 6, 9, 0, 5
Offset: 1
Examples
1.94359643682075920505707036257476343718785850176780571602663568890 ...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.7, p. 116.
- Joe Roberts, Lure of the Integers, Mathematical Association of America, 1992. See p. 74.
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..2000
- Paul T. Bateman, The distribution of values of the Euler function, Acta Arithmetica 21:1 (1972), pp. 329-345.
- Olivier Bordellès and Benoit Cloitre, An Alternating Sum Involving the Reciprocal of Certain Multiplicative Functions, J. Int. Seq. 16 (2013) #13.6.3.
- Robert E. Dressler, A density which counts multiplicity, Pacific J. Math. 34 (1970), pp. 371-378.
- Paul Erdős, Some remarks on Euler's ϕ function and some related problems, Bull. Amer. Math. Soc. 51 (1945), pp. 540-544.
- J. von zur Gathen et al., Average order in cyclic groups, J. Theor. Nombres Bordeaux, 16 (2004), 107-123. Lists several other papers where this constant arises.
- S. W. Golomb, Powerful numbers, Amer. Math. Monthly, Vol. 77 (1970), 848-852.
- D. Handelman, Invariants for critical dimension groups and permutation-Hermite equivalence, arXiv preprint arXiv:1309.7417 [math.AC], 2013.
- Eric Weisstein's World of Mathematics, Totient Summatory Function.
- Eric Weisstein's World of Mathematics, Powerful Number.
- Wikipedia, Euler's totient function.
Crossrefs
Programs
-
Mathematica
First@RealDigits[ Zeta[2]*Zeta[3]/Zeta[6], 10, 100] RealDigits[ 315 Zeta[3]/(2 Pi^4), 10, 111][[1]] (* Robert G. Wilson v, Aug 11 2014 *)
-
PARI
zeta(3)*315/2/Pi^4
Formula
Decimal expansion of Product_{p prime} (1+1/p/(p-1)) = zeta(2)*zeta(3)/zeta(6) = 1.94359643682075920505707...
Equals Sum_{k>=1} mu(k)^2/(k*phi(k)) (the sum of reciprocals of the squarefree numbers multiplied by their Euler totient function values, A000010). - Amiram Eldar, Aug 18 2020
Extensions
New definition from Eric W. Weisstein, May 04 2006
Comments