cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082762 Trinomial transform of Lucas numbers (A000032).

Original entry on oeis.org

1, 8, 44, 232, 1216, 6368, 33344, 174592, 914176, 4786688, 25063424, 131233792, 687149056, 3597959168, 18839158784, 98643116032, 516502061056, 2704439902208, 14160631169024, 74146027405312, 388233639755776, 2032817728913408, 10643971814457344
Offset: 0

Views

Author

Emanuele Munarini, May 21 2003

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 8]; [n le 2 select I[n] else 6*Self(n-1)-4*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Mathematica
    a[n_]:=(MatrixPower[{{2,2},{2,4}},n].{{2},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
    f[n_] := Block[{s = Sqrt@ 5}, Simplify[((1 + s)(3 + s)^n + (1 - s)(3 - s)^n)/2]]; Array[f, 21, 0] (* Robert G. Wilson v, Mar 07 2011 *)
    LinearRecurrence[{6,-4}, {1, 8}, 30] (* G. C. Greubel, Dec 21 2017 *)
  • PARI
    x='x+O('x^30); Vec((1 + 2*x)/(1 - 6*x + 4*x^2)) \\ G. C. Greubel, Dec 21 2017
    

Formula

a(n) = Sum_{k=0..2*n} Trinomial(n,k)*Lucas(k+1), where Trinomial(n,k) = trinomial coefficients (A027907).
a(n) = 2^n*Lucas(2*n+1), where Lucas = A000032.
From Philippe Deléham, Mar 01 2004: (Start)
a(n) = 2^n*A002878(n) = 2^(-n)*Sum_{k>=0} C(2*n+1,2*k)*5^k; see A091042.
a(0) = 1, a(1) = 8, a(n+1) = 6*a(n) - 4*a(n-1). (End)
From Al Hakanson (hawkuu(AT)gmail.com), Jul 13 2009: (Start)
a(n) = ((1+sqrt(5))*(3+sqrt(5))^n + (1-sqrt(5))*(3-sqrt(5))^n)/2.
Third binomial transform of 1, 5, 5, 25, 25, 125. (End)
G.f.: (1 + 2*x)/(1 - 6*x + 4*x^2). - Colin Barker, Mar 23 2012