cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082766 Series ratios converge alternately to sqrt(2) and 1+sqrt(1/2).

Original entry on oeis.org

1, 1, 2, 3, 4, 7, 10, 17, 24, 41, 58, 99, 140, 239, 338, 577, 816, 1393, 1970, 3363, 4756, 8119, 11482, 19601, 27720, 47321, 66922, 114243, 161564, 275807, 390050, 665857, 941664, 1607521, 2273378, 3880899, 5488420, 9369319, 13250218, 22619537
Offset: 1

Views

Author

Gary W. Adamson, May 24 2003

Keywords

Comments

a(2n+2)/a(2n+1) converges to sqrt(2).
a(2n+1)/a(2n) converges to 1+sqrt(1/2).
a(n+2)/a(n) converges to 1+sqrt(2).
a(2n) is A001333, a(2n+1) is A052542.

Crossrefs

Cf. A001333, A052542. See A119016 for another version.

Programs

  • Haskell
    import Data.List (transpose)
    a082766 n = a082766_list !! (n-1)
    a082766_list = concat $ transpose [a052542_list, tail a001333_list]
    -- Reinhard Zumkeller, Feb 24 2015
    
  • Mathematica
    Rest[CoefficientList[Series[x (1 - x^2 + x) (x^2 + 1)/(1 - 2 x^2 - x^4), {x, 0, 50}], x]] (* G. C. Greubel, Nov 28 2017 *)
    LinearRecurrence[{0,2,0,1},{1,1,2,3,4},50] (* Harvey P. Dale, Dec 15 2022 *)
  • PARI
    x='x+O('x^30); Vec(x*(1+x-x^2)*(x^2+1)/(1-2*x^2-x^4)) \\ G. C. Greubel, Nov 28 2017

Formula

a(2n) = a(2n-1) + a(2n-2); a(2n+1) = a(2n) + a(2n-2)
O.g.f.: x*(1+x-x^2)*(x^2+1)/(1-2*x^2-x^4). - R. J. Mathar, Aug 08 2008

Extensions

Edited by Don Reble, Nov 04 2005