A082771 Triangular array, read by rows: t(n,k) = Sum_{d|n} d^k, 0 <= k < n.
1, 2, 3, 2, 4, 10, 3, 7, 21, 73, 2, 6, 26, 126, 626, 4, 12, 50, 252, 1394, 8052, 2, 8, 50, 344, 2402, 16808, 117650, 4, 15, 85, 585, 4369, 33825, 266305, 2113665, 3, 13, 91, 757, 6643, 59293, 532171, 4785157, 43053283, 4, 18, 130, 1134, 10642, 103158, 1015690, 10078254, 100390882, 1001953638
Offset: 1
Examples
From _R. J. Mathar_, Dec 06 2006 (Start): The triangle may be extended to a rectangular array (A319278): 1 1 1 1 1 1 1 1 1 1 1 ... 2 3 5 9 17 33 65 129 257 513 1025 ... 2 4 10 28 82 244 730 2188 6562 19684 59050 ... 3 7 21 73 273 1057 4161 16513 65793 262657 1049601 ... 2 6 26 126 626 3126 15626 78126 390626 1953126 9765626 ... 4 12 50 252 1394 8052 47450 282252 1686434 10097892 60526250 ... 2 8 50 344 2402 16808 117650 823544 5764802 40353608 282475250 ... 4 15 85 585 4369 33825 266305 2113665 16843009 134480385 1074791425 ... 3 13 91 757 6643 59293 532171 4785157 43053283 387440173 3486843451 ... 4 18 130 1134 10642 103158 1015690 10078254 100390882 1001953638... (End)
Links
- T. D. Noe, Rows n=1..100, flattened
- Eric Weisstein's World of Mathematics, Divisor Function.
Crossrefs
Programs
-
Maple
T:= (n,k)-> numtheory[sigma][k](n): seq(seq(T(n,k), k=0..n-1), n=1..10); # Alois P. Heinz, Oct 25 2024
-
Mathematica
T[n_, k_] := DivisorSigma[k, n]; Table[T[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Dec 16 2021 *)
-
PARI
row(n) = {my(f = factor(n)); vector(n, k, sigma(f, k-1));} \\ Amiram Eldar, May 09 2025
Formula
t(n, k) = Product(((p^((e(n, p)+1)*k))-1)/(p^k-1): n=Product(p^e(n, p): p prime)), 0<=k
From R. J. Mathar, Oct 29 2006: (Start)
Extensions
Corrected by R. J. Mathar, Dec 05 2006