cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082771 Triangular array, read by rows: t(n,k) = Sum_{d|n} d^k, 0 <= k < n.

Original entry on oeis.org

1, 2, 3, 2, 4, 10, 3, 7, 21, 73, 2, 6, 26, 126, 626, 4, 12, 50, 252, 1394, 8052, 2, 8, 50, 344, 2402, 16808, 117650, 4, 15, 85, 585, 4369, 33825, 266305, 2113665, 3, 13, 91, 757, 6643, 59293, 532171, 4785157, 43053283, 4, 18, 130, 1134, 10642, 103158, 1015690, 10078254, 100390882, 1001953638
Offset: 1

Views

Author

Reinhard Zumkeller, May 21 2003

Keywords

Examples

			From _R. J. Mathar_, Dec 06 2006 (Start):
The triangle may be extended to a rectangular array (A319278):
  1  1   1    1     1 1 1 1 1 1 1 ...
  2  3   5    9    17 33 65 129 257 513 1025 ...
  2  4  10   28    82 244 730 2188 6562 19684 59050 ...
  3  7  21   73   273 1057 4161 16513 65793 262657 1049601 ...
  2  6  26  126   626 3126 15626 78126 390626 1953126 9765626 ...
  4 12  50  252  1394 8052 47450 282252 1686434 10097892 60526250 ...
  2  8  50  344  2402 16808 117650 823544 5764802 40353608 282475250 ...
  4 15  85  585  4369 33825 266305 2113665 16843009 134480385 1074791425 ...
  3 13  91  757  6643 59293 532171 4785157 43053283 387440173 3486843451 ...
  4 18 130 1134 10642 103158 1015690 10078254 100390882 1001953638... (End)
		

Crossrefs

Programs

  • Maple
    T:= (n,k)-> numtheory[sigma][k](n):
    seq(seq(T(n,k), k=0..n-1), n=1..10);  # Alois P. Heinz, Oct 25 2024
  • Mathematica
    T[n_, k_] := DivisorSigma[k, n];
    Table[T[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Dec 16 2021 *)
  • PARI
    row(n) = {my(f = factor(n)); vector(n, k, sigma(f, k-1));} \\ Amiram Eldar, May 09 2025

Formula

t(n, k) = Product(((p^((e(n, p)+1)*k))-1)/(p^k-1): n=Product(p^e(n, p): p prime)), 0<=k
t(n,0) = A000005(n), t(n,n) = A023887(n).
t(n,1) = A000203(n), n>1; t(n,2) = A001157(n), n>2; t(n,3) = A001158(n), n>3.
t(n,4) = A001159(n), n>4; t(n,5) = A001160(n), n>5; t(n,6) = A013954(n), n>6.
From R. J. Mathar, Oct 29 2006: (Start)
t(2,k) = A000051(k); t(3,k) = A034472(k); t(4,k) = A001576(k);
t(5,k) = A034474(k); t(6,k) = A034488(k); t(7,k) = A034491(k);
t(8,k) = A034496(k); t(9,k) = A034513(k); t(10,k) = A034517(k);
t(11,k) = A034524(k); t(12,k) = A034660(k). (End)

Extensions

Corrected by R. J. Mathar, Dec 05 2006