A082786 Triangle, read by rows, of exponents of primes in canonical prime factorization of n: T(n,k) = greatest number such that prime(k)^T(n,k) divides n, 1 <= k <= n.
0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
Triangle begins: 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, ...
Links
- Eric Weisstein's World of Mathematics, Prime Factorization
Programs
-
Mathematica
Table[IntegerExponent[n, Prime[k]], {n,1,15}, {k,1,n}] // Flatten (* Amiram Eldar, Dec 14 2018 *)
-
PARI
row(n) = vector(n, k, valuation(n, prime(k))); tabl(nn) = for (n=1, nn, print(row(n))); \\ Michel Marcus, Dec 14 2018
Comments