cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082786 Triangle, read by rows, of exponents of primes in canonical prime factorization of n: T(n,k) = greatest number such that prime(k)^T(n,k) divides n, 1 <= k <= n.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 22 2003

Keywords

Comments

n = Product_{k=1..n} prime(k)^T(n,k);
T(n, A055396(n)) > 0 and T(n,k) = 0 for 1 <= k < A055396(n);
T(n, A061395(n)) > 0 and T(n,k) = 0 for A061395(n) < k <= n;
Sum_{k=1..n} T(n,k) = A001222(n);
Sum_{k=1..n} A057427(T(n,k)) = A001221(n);
Sum_{k=1..n} T(n,k)*prime(k) = A001414(n);
Sum_{k=1..n} A057427(T(n,k))*prime(k) = A008472(n);
Min(T(n,k): 1<=k<=n) = A051904(n);
Max(T(n,k): 1<=k<=n) = A051903(n);
T(n,1) = A007814(n); T(n,2) = A007949(n), n>1.

Examples

			Triangle begins:
  0,
  1, 0,
  0, 1, 0,
  2, 0, 0, 0,
  0, 0, 1, 0, 0,
  1, 1, 0, 0, 0, 0,
  0, 0, 0, 1, 0, 0, 0,
  3, 0, 0, 0, 0, 0, 0, 0,
  ...
		

Crossrefs

Cf. A067255 (same as irregular triangle).

Programs

  • Mathematica
    Table[IntegerExponent[n, Prime[k]], {n,1,15}, {k,1,n}] // Flatten  (* Amiram Eldar, Dec 14 2018 *)
  • PARI
    row(n) = vector(n, k, valuation(n, prime(k)));
    tabl(nn) = for (n=1, nn, print(row(n))); \\ Michel Marcus, Dec 14 2018