cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082870 Tribonacci array.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 4, 6, 2, 1, 5, 10, 7, 1, 1, 6, 15, 16, 6, 1, 7, 21, 30, 19, 3, 1, 8, 28, 50, 45, 16, 1, 1, 9, 36, 77, 90, 51, 10, 1, 10, 45, 112, 161, 126, 45, 4, 1, 11, 55, 156, 266, 266, 141, 30, 1, 1, 12, 66, 210, 414, 504, 357, 126, 15, 1, 13, 78, 275, 615, 882
Offset: 0

Views

Author

Gary W. Adamson, May 24 2003

Keywords

Comments

Row sums are tribonacci numbers.
From Gary W. Adamson, Nov 15 2016: (Start)
With an alternative format:
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, 0, ...
1, 2, 3, 2, 1, 0, 0, ...
1, 3, 6, 7, 6, 3, 1, ...
... (where the k-th row is (1 + x + x^2)^k), let q(x) = (r(x) * r(x^3) * r(x^9) * r(x^27) * ...). Then q(x) is the binomial sequence beginning (1, k, ...). Example: (1, 3, 6, 10, ...) = q(x) with r(x) = (1, 3, 6, 7, 3, 1, 0, 0, 0). (End)

Examples

			Triangle begins:
  1,
  1,
  1,  1,
  1,  2,  1,
  1,  3,  3,
  1,  4,  6,  2,
  1,  5, 10,  7,  1,
  1,  6, 15, 16,  6,
		

References

  • Thomas Koshy, <"Fibonacci and Lucas Numbers with Applications">, Wiley, 2001; Chapter 47: Tribonacci Polynomials: ("In 1973, V.E. Hoggat, Jr. and M. Bicknell generalized Fibonacci polynomials to Tribonacci polynomials tx(x)"); Table 47.1, page 534: "Tribonacci Array".

Crossrefs

A082601 is a better version. Cf. A000073, A078802.
Cf. A004396 (row lengths).

Programs

  • Haskell
    a082870 n k = a082870_tabf !! n !! k
    a082870_row n = a082870_tabf !! n
    a082870_tabf = map (takeWhile (> 0)) a082601_tabl
    -- Reinhard Zumkeller, Apr 13 2014

Formula

G.f.: x/(1 - x - x^2*y - x^3*y^2). - Vladeta Jovovic, May 30 2003

Extensions

More terms from Vladeta Jovovic, May 30 2003