A239283 n^(p1) + n^(p2) + n^(p3) + ... where (p1)*(p2)*(p3)*.... is the prime factorization of n (with multiplicity).
0, 4, 27, 32, 3125, 252, 823543, 192, 1458, 100100, 285311670611, 2016, 302875106592253, 105413700, 762750, 1024, 827240261886336764177, 11988, 1978419655660313589123979, 3200800, 1801097802, 584318301411812, 20880467999847912034355032910567, 15552, 19531250
Offset: 1
Examples
a(8) = a(2*2*2) = 8^2 + 8^2 + 8^2 = 192.
Programs
-
Maple
A239283 := proc(n) local ps; ps := ifactors(n)[2] ; add( op(2,p)*n^op(1,p),p=ps) ; end proc: seq(A239283(n),n=1..22) ;
-
PARI
a(n) = my(f = factor(n)); sum(i=1, #f~, f[i,2]*n^f[i, 1]); \\ Michel Marcus, Mar 14 2014
Formula
a(n) = sum_i [e_i*n^(p_i)], where n=product_i (p_i)^(e_i) is the prime factorization of n.
Comments