A082903 Highest power of two that divides the sum of divisors of n.
1, 1, 4, 1, 2, 4, 8, 1, 1, 2, 4, 4, 2, 8, 8, 1, 2, 1, 4, 2, 32, 4, 8, 4, 1, 2, 8, 8, 2, 8, 32, 1, 16, 2, 16, 1, 2, 4, 8, 2, 2, 32, 4, 4, 2, 8, 16, 4, 1, 1, 8, 2, 2, 8, 8, 8, 16, 2, 4, 8, 2, 32, 8, 1, 4, 16, 4, 2, 32, 16, 8, 1, 2, 2, 4, 4, 32, 8, 16, 2, 1, 2, 4, 32, 4, 4, 8, 4, 2, 2, 16, 8, 128, 16, 8, 4, 2
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Amir Hossein, Lifting The Exponent Lemma (Containing PDF file)
- Jon Maiga, Computer-generated formulas for A082903, Sequence Machine.
Crossrefs
Programs
-
Maple
seq(2^min(n, padic:-ordp(numtheory:-sigma(n),2)), n=1..100); # Robert Israel, Oct 23 2016
-
Mathematica
Array[2^IntegerExponent[DivisorSigma[1, #], 2] &, 97] (* Michael De Vlieger, Apr 03 2022 *)
-
PARI
a(n) = gcd(2^n, sigma(n)); \\ Michel Marcus, Oct 15 2016
-
PARI
A082903(n) = (2^valuation(sigma(n), 2)); \\ Antti Karttunen, Mar 27 2022
-
Python
from sympy import divisor_sigma def A082903(n): return 1<<(~(m:=int(divisor_sigma(n))) & m-1).bit_length() # Chai Wah Wu, Jul 02 2022
Formula
Extensions
Name replaced with a simpler one and the original definition moved to the Comments section by Antti Karttunen, Apr 03 2022
Comments