A082916 Numbers k such that k and binomial(2*k, k) are relatively prime.
0, 1, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 55, 59, 61, 67, 71, 73, 79, 81, 83, 89, 93, 97, 101, 103, 107, 109, 111, 113, 119, 121, 125, 127, 131, 137, 139, 149, 151, 155, 157, 161, 163, 167, 169, 173, 179, 181, 185, 191, 193, 197
Offset: 1
Keywords
References
- J. Glaisher, On the residue of a binomial-theorem coefficient with respect to a prime modulus, Quarterly J. of Pure and Applied Math. 30 (1899), 150-156.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[0, 100], CoprimeQ[Binomial[2*#, #], #] &] (* Amiram Eldar, May 24 2020 *)
-
PARI
isok(n) = gcd(n, binomial(2*n, n)) == 1; \\ Michel Marcus, Dec 04 2013
-
Python
from math import gcd A082916_list, b = [], 1 for n in range(10**5): if gcd(n,b) == 1: A082916_list.append(n) b = b*(4*n+2)//(n+1) # Chai Wah Wu, Mar 25 2016
Formula
It seems that a(n) is asymptotic to c*n*log(n) with 0.7
Comments