A082970 Number of permutations of length n containing 2 occurrences of 132.
4, 23, 107, 464, 1950, 8063, 33033, 134576, 546312, 2212550, 8946454, 36134656, 145831270, 588199815, 2371435125, 9557736480, 38511326040, 155143873170, 624899673690, 2516678580000, 10134353299980, 40805797511622
Offset: 4
Keywords
Links
- T. Mansour and A. Vainshtein, Counting occurrences of 132 in a permutation, arXiv:math/0105073 [math.CO], 2001.
Crossrefs
Column k=2 of A263771.
Programs
-
Mathematica
Table[Binomial[2n-6,n-2] (n^3+17n^2-80n+80)/(2n(n-1)),{n,4,30}] (* Harvey P. Dale, Dec 25 2018 *)
-
PARI
a(n)=binomial(2*n-6,n-2)*(n^3+17*n^2-80*n+80)/2/n/(n-1)
Formula
a(n) = C(2*n-6,n-2)*(n^3+17*n^2-80*n+80)/(2n(n-1)).