cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A062786 Centered 10-gonal numbers.

Original entry on oeis.org

1, 11, 31, 61, 101, 151, 211, 281, 361, 451, 551, 661, 781, 911, 1051, 1201, 1361, 1531, 1711, 1901, 2101, 2311, 2531, 2761, 3001, 3251, 3511, 3781, 4061, 4351, 4651, 4961, 5281, 5611, 5951, 6301, 6661, 7031, 7411, 7801, 8201, 8611, 9031, 9461, 9901, 10351, 10811
Offset: 1

Views

Author

Jason Earls, Jul 19 2001

Keywords

Comments

Deleting the least significant digit yields the (n-1)-st triangular number: a(n) = 10*A000217(n-1) + 1. - Amarnath Murthy, Dec 11 2003
All divisors of a(n) are congruent to 1 or -1, modulo 10; that is, they end in the decimal digit 1 or 9. Proof: If p is an odd prime different from 5 then 5n^2 - 5n + 1 == 0 (mod p) implies 25(2n - 1)^2 == 5 (mod p), whence p == 1 or -1 (mod 10). - Nick Hobson, Nov 13 2006
Centered decagonal numbers. - Omar E. Pol, Oct 03 2011
The partial sums of this sequence give A004466. - Leo Tavares, Oct 04 2021
The continued fraction expansion of sqrt(5*a(n)) is [5n-3; {2, 2n-2, 2, 10n-6}]. For n=1, this collapses to [2; {4}]. - Magus K. Chu, Sep 12 2022
Numbers m such that 20*m + 5 is a square. Also values of the Fibonacci polynomial y^2 - x*y - x^2 for x = n and y = 3*n - 1. This is a subsequence of A089270. - Klaus Purath, Oct 30 2022
All terms can be written as a difference of two consecutive squares a(n) = A005891(n-1)^2 - A028895(n-1)^2, and they can be represented by the forms (x^2 + 2mxy + (m^2-1)y^2) and (3x^2 + (6m-2)xy + (3m^2-2m)y^2), both of discriminant 4. - Klaus Purath, Oct 17 2023

Crossrefs

Programs

  • GAP
    List([1..50], n-> 1+5*n*(n-1)); # G. C. Greubel, Mar 30 2019
    
  • Magma
    [1+5*n*(n-1): n in [1..50]]; // G. C. Greubel, Mar 30 2019
    
  • Mathematica
    FoldList[#1+#2 &, 1, 10Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *)
    1+5*Pochhammer[Range[50]-1, 2] (* G. C. Greubel, Mar 30 2019 *)
  • PARI
    j=[]; for(n=1,75,j=concat(j,(5*n*(n-1)+1))); j
    
  • PARI
    for (n=1, 1000, write("b062786.txt", n, " ", 5*n*(n - 1) + 1) ) \\ Harry J. Smith, Aug 11 2009
    
  • Python
    def a(n): return(5*n**2-5*n+1) # Torlach Rush, May 10 2024
  • Sage
    [1+5*rising_factorial(n-1, 2) for n in (1..50)] # G. C. Greubel, Mar 30 2019
    

Formula

a(n) = 5*n*(n-1) + 1.
From Gary W. Adamson, Dec 29 2007: (Start)
Binomial transform of [1, 10, 10, 0, 0, 0, ...];
Narayana transform (A001263) of [1, 10, 0, 0, 0, ...]. (End)
G.f.: x*(1+8*x+x^2) / (1-x)^3. - R. J. Mathar, Feb 04 2011
a(n) = A124080(n-1) + 1. - Omar E. Pol, Oct 03 2011
a(n) = A101321(10,n-1). - R. J. Mathar, Jul 28 2016
a(n) = A028387(A016861(n-1))/5 for n > 0. - Art Baker, Mar 28 2019
E.g.f.: (1+5*x^2)*exp(x) - 1. - G. C. Greubel, Mar 30 2019
Sum_{n>=1} 1/a(n) = Pi * tan(Pi/(2*sqrt(5))) / sqrt(5). - Vaclav Kotesovec, Jul 23 2019
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=1} a(n)/n! = 6*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 6/e - 1. (End)
a(n) = A005891(n-1) + 5*A000217(n-1). - Leo Tavares, Jul 14 2021
a(n) = A003154(n) - 2*A000217(n-1). See Mid-section Stars illustration. - Leo Tavares, Sep 06 2021
From Leo Tavares, Oct 06 2021: (Start)
a(n) = A144390(n-1) + 2*A028387(n-1). See Mid-section Star Pillars illustration.
a(n) = A000326(n) + A000217(n) + 3*A000217(n-1). See Trapezoidal Rays illustration.
a(n) = A060544(n) + A000217(n-1). (End)
From Leo Tavares, Oct 31 2021: (Start)
a(n) = A016754(n-1) + 2*A000217(n-1).
a(n) = A016754(n-1) + A002378(n-1).
a(n) = A069099(n) + 3*A000217(n-1).
a(n) = A069099(n) + A045943(n-1).
a(n) = A003215(n-1) + 4*A000217(n-1).
a(n) = A003215(n-1) + A046092(n-1).
a(n) = A001844(n-1) + 6*A000217(n-1).
a(n) = A001844(n-1) + A028896(n-1).
a(n) = A005448(n) + 7*A000217(n).
a(n) = A005448(n) + A024966(n). (End)
From Klaus Purath, Oct 30 2022: (Start)
a(n) = a(n-2) + 10*(2*n-3).
a(n) = 2*a(n-1) - a(n-2) + 10.
a(n) = A135705(n-1) + n.
a(n) = A190816(n) - n.
a(n) = 2*A005891(n-1) - 1. (End)

Extensions

Better description from Terrel Trotter, Jr., Apr 06 2002

A263771 Triangle read by rows: T(n,k) (n>=0, k>=0) is the number of permutations of n and k occurrences of the pattern 312.

Original entry on oeis.org

1, 1, 2, 5, 1, 14, 5, 4, 1, 42, 21, 23, 14, 12, 5, 3, 132, 84, 107, 82, 96, 55, 64, 37, 29, 22, 10, 0, 2, 429, 330, 464, 410, 526, 394, 475, 365, 360, 298, 281, 175, 206, 126, 93, 55, 23, 14, 13, 1, 2, 1430, 1287, 1950, 1918, 2593, 2225, 2858, 2489, 2682, 2401
Offset: 0

Views

Author

Christian Stump, Oct 26 2015

Keywords

Comments

Row sums give A000142.
First column gives A000108.
Also the number of permutations of n and k occurrences of either of the fixed pattern 132, 213, 231 (these are all connected by reverses and inverses).
Columns k=1-5 give: A002054(n-2) for n>=3, A082970, A082971, A138162, A138163. - Alois P. Heinz, Oct 27 2015

Examples

			Triangle begins:
    1;
    1;
    2;
    5,  1;
   14,  5,   4,  1;
   42, 21,  23, 14, 12,  5,  3;
  132, 84, 107, 82, 96, 55, 64, 37, 29, 22, 10, 0, 2;
  ...
		

Crossrefs

Programs

  • Mathematica
    Join@@Array[Table[Length@Select[Permutations@Range@#,Length@Select[Subsets[#,{3}],Ordering@Ordering@#=={3,1,2}&]==k&],{k,0,Binomial[#+1,3]}]//.{a__,0}:>{a}&,8,0]  (* Giorgos Kalogeropoulos, Mar 26 2021 *)

Formula

Sum_{k>0} k * T(n,k) = A001810(n). - Alois P. Heinz, Oct 27 2015

Extensions

More terms from Alois P. Heinz, Oct 26 2015

A082971 Number of permutations of {1,2,...,n} containing exactly 3 occurrences of the 132 pattern.

Original entry on oeis.org

1, 14, 82, 410, 1918, 8657, 38225, 166322, 716170, 3059864, 12994936, 54924212, 231235054, 970347575, 4060697955, 16952812170, 70629116910, 293720506860, 1219498444500, 5055891511980, 20933654593020, 86571545598642, 357628915621698, 1475896409177780
Offset: 4

Views

Author

Benoit Cloitre, May 27 2003

Keywords

Examples

			a(4)=1 because we have 1432 (the 132 occurrences are 143, 142 and 132).
		

Crossrefs

Column k=3 of A263771.

Programs

  • Magma
    [1] cat [(n^6+51*n^5-407*n^4-99*n^3+7750*n^2-22416*n+20160)* Factorial(2*n-9)/(6*Factorial(n)*Factorial(n-5)): n in [5..30]]; // Vincenzo Librandi, Oct 30 2018
  • Maple
    P:=2*x^3-5*x^2+7*x-2: Q:=-22*x^6-106*x^5+292*x^4-302*x^3+135*x^2-27*x+2: g:= (P+Q/(1-4*x)^(5/2))*1/2: gser:=series(g,x=0,30): seq(coeff(gser,x,n),n=4..25); # Emeric Deutsch, Mar 27 2008
  • Mathematica
    a[4] = 1; a[n_] := (n^6 + 51 n^5 - 407 n^4 - 99 n^3 + 7750 n^2 - 22416 n + 20160) (2 n - 9)!/(6 n! (n - 5)!);
    Table[a[n], {n, 4, 25}] (* Jean-François Alcover, Oct 30 2018 *)
  • PARI
    a(n)=(2*n-9)!/n!/6/(n-5)!*(n^6+51*n^5-407*n^4-99*n^3 +7750*n^2 -22416*n+20160)
    

Formula

a(n) = (2*n-9)!/n!/6/(n-5)! *(n^6+51*n^5-407*n^4-99*n^3 +7750*n^2 -22416*n +20160).
a(n) = (n^6 + 51*n^5 - 407*n^4 - 99*n^3 + 7750*n^2 - 22416*n + 20160)*(2*n-9)!/(6*n!*(n-5)!) for n>=5; a(4)=1. G.f.: (1/2)*(P(x) + Q(x)/(1-4*x)^(5/2)), where P(x) = 2*x^3 - 5*x^2 + 7*x - 2, Q(x) = -22*x^6 - 106*x^5 + 292*x^4 - 302*x^3 + 135*x^2 - 27*x + 2. - Emeric Deutsch, Mar 27 2008

Extensions

Edited by N. J. A. Sloane, May 21 2008 at the suggestion of R. J. Mathar

A138162 Number of permutations of {1,2,...,n} containing exactly 4 occurrences of the 132 pattern.

Original entry on oeis.org

12, 96, 526, 2593, 12165, 55482, 248509, 1099255, 4817998, 20968680, 90747564, 390927869, 1677551078, 7174848666, 30598014925, 130155932685, 552386655300, 2339526458640, 9890067346740, 41737405295250, 175859194700958
Offset: 5

Views

Author

Emeric Deutsch, Mar 27 2008

Keywords

Examples

			a(5)=12 because we have 12534, 12453, 14253, 14523, 13254, 13524, 15324, 14352, 31542, 21534, 21453 and 25143.
		

Crossrefs

Column k=4 of A263771.

Programs

  • Maple
    P:=5*x^4-7*x^3+2*x^2+8*x-3: Q:=2*x^9+218*x^8+1074*x^7-1754*x^6 +388*x^5 +1087*x^4-945*x^3+320*x^2-50*x+3: g:=(P+Q/(1-4*x)^(7/2))*1/2: gser:=series(g,x=0,30): seq(coeff(gser,x,n),n=5..25);

Formula

a(n) = (n^9+102n^8-282n^7-12264n^6+32589n^5+891978n^4-7589428n^3 +25452024n^2-39821760n +23950080)(2n-12)!/[24n!(n-6)! ] for n>=6, a(5)=12.
G.f.: (1/2)[P(x) + Q(x)/(1-4x)^(7/2)], where P(x)=5x^4-7x^3+2x^2+8x-3, Q(x)=2x^9 +218x^8+1074x^7 -1754x^6 +388x^5 +1087x^4 -945x^3+320x^2-50x+3.

A138163 Number of permutations of {1,2,...,n} containing exactly 5 occurrences of the pattern 132.

Original entry on oeis.org

5, 55, 394, 2225, 11539, 57064, 273612, 1283621, 5924924, 27005978, 121861262, 545368160, 2423923480, 10710273856, 47085144255, 206085075295, 898489543020, 3903621095130, 16906888008960, 73018012573950, 314540265217362
Offset: 5

Views

Author

Emeric Deutsch, Mar 28 2008

Keywords

Examples

			a(5)=5 because we have 13542, 14532, 15243, 15342 and 15423.
		

References

  • B. K. Nakamura, Computational methods in permutation patterns, PhD Dissertation, Rutgers University, May 2013.

Crossrefs

Column k=5 of A263771.

Programs

  • Maple
    a:=proc(n) options operator, arrow: (1/120)*(n^12+170*n^11 +1861*n^10 -88090*n^9 -307617*n^8 +27882510*n^7 -348117457*n^6 +2119611370*n^5 -6970280884*n^4 +10530947320*n^3 +2614396896*n^2 -30327454080*n +29059430400) *factorial(2*n-15) / (factorial(n)*factorial(n-7)) end proc: 5, 55, 394, seq(a(n), n = 8 .. 25);
  • Mathematica
    terms = 21; offset = 5;
    P[x_] := 14 x^5 - 17 x^4 + x^3 - 16 x^2 + 14 x - 2;
    Q[x_] := -50 x^11 - 2568 x^10 - 10826 x^9 + 16252 x^8 - 12466 x^7 + 16184 x^6 - 16480 x^5 + 9191 x^4 - 2893 x^3 + 520 x^2 - 50 x + 2;
    Drop[CoefficientList[(1/2) (P[x] + Q[x]/(1 - 4 x)^(9/2)) + O[x]^(terms + offset), x], offset] (* Jean-François Alcover, Dec 13 2017 *)

Formula

a(n) = (n^12+170n^11+1861n^10-88090n^9-307617n^8+27882510n^7 -348117457n^6 +2119611370n^5 -6970280884n^4 +10530947320n^3 +2614396896n^2 -30327454080n +29059430400)(2n-15)!/[120 n!(n-7)! ] for n>=8; a(5)=5; a(6)=55; a(7)=394.
G.f.: (1/2)[P(x) + Q(x)/(1-4x)^(9/2)], where P(x) = 14x^5 - 17x^4 + x^3 - 16x^2 + 14x - 2, Q(x)= -50x^11 - 2568x^10 - 10826x^9 + 16252x^8 - 12466x^7 + 16184x^6 - 16480x^5 + 9191x^4 - 2893x^3 + 520x^2 - 50x + 2.
Showing 1-5 of 5 results.