cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A082972 Incorrect version of A082971.

Original entry on oeis.org

82, 410, 1918, 8657, 38225, 166322, 716170, 3059864, 12994936, 54924212, 231235054, 970347575, 4060697955, 16952812170, 70629116910, 293720506860, 1219498444500, 5055891511980, 20933654593020, 86571545598642
Offset: 6

Views

Author

Keywords

A263771 Triangle read by rows: T(n,k) (n>=0, k>=0) is the number of permutations of n and k occurrences of the pattern 312.

Original entry on oeis.org

1, 1, 2, 5, 1, 14, 5, 4, 1, 42, 21, 23, 14, 12, 5, 3, 132, 84, 107, 82, 96, 55, 64, 37, 29, 22, 10, 0, 2, 429, 330, 464, 410, 526, 394, 475, 365, 360, 298, 281, 175, 206, 126, 93, 55, 23, 14, 13, 1, 2, 1430, 1287, 1950, 1918, 2593, 2225, 2858, 2489, 2682, 2401
Offset: 0

Views

Author

Christian Stump, Oct 26 2015

Keywords

Comments

Row sums give A000142.
First column gives A000108.
Also the number of permutations of n and k occurrences of either of the fixed pattern 132, 213, 231 (these are all connected by reverses and inverses).
Columns k=1-5 give: A002054(n-2) for n>=3, A082970, A082971, A138162, A138163. - Alois P. Heinz, Oct 27 2015

Examples

			Triangle begins:
    1;
    1;
    2;
    5,  1;
   14,  5,   4,  1;
   42, 21,  23, 14, 12,  5,  3;
  132, 84, 107, 82, 96, 55, 64, 37, 29, 22, 10, 0, 2;
  ...
		

Crossrefs

Programs

  • Mathematica
    Join@@Array[Table[Length@Select[Permutations@Range@#,Length@Select[Subsets[#,{3}],Ordering@Ordering@#=={3,1,2}&]==k&],{k,0,Binomial[#+1,3]}]//.{a__,0}:>{a}&,8,0]  (* Giorgos Kalogeropoulos, Mar 26 2021 *)

Formula

Sum_{k>0} k * T(n,k) = A001810(n). - Alois P. Heinz, Oct 27 2015

Extensions

More terms from Alois P. Heinz, Oct 26 2015

A138162 Number of permutations of {1,2,...,n} containing exactly 4 occurrences of the 132 pattern.

Original entry on oeis.org

12, 96, 526, 2593, 12165, 55482, 248509, 1099255, 4817998, 20968680, 90747564, 390927869, 1677551078, 7174848666, 30598014925, 130155932685, 552386655300, 2339526458640, 9890067346740, 41737405295250, 175859194700958
Offset: 5

Views

Author

Emeric Deutsch, Mar 27 2008

Keywords

Examples

			a(5)=12 because we have 12534, 12453, 14253, 14523, 13254, 13524, 15324, 14352, 31542, 21534, 21453 and 25143.
		

Crossrefs

Column k=4 of A263771.

Programs

  • Maple
    P:=5*x^4-7*x^3+2*x^2+8*x-3: Q:=2*x^9+218*x^8+1074*x^7-1754*x^6 +388*x^5 +1087*x^4-945*x^3+320*x^2-50*x+3: g:=(P+Q/(1-4*x)^(7/2))*1/2: gser:=series(g,x=0,30): seq(coeff(gser,x,n),n=5..25);

Formula

a(n) = (n^9+102n^8-282n^7-12264n^6+32589n^5+891978n^4-7589428n^3 +25452024n^2-39821760n +23950080)(2n-12)!/[24n!(n-6)! ] for n>=6, a(5)=12.
G.f.: (1/2)[P(x) + Q(x)/(1-4x)^(7/2)], where P(x)=5x^4-7x^3+2x^2+8x-3, Q(x)=2x^9 +218x^8+1074x^7 -1754x^6 +388x^5 +1087x^4 -945x^3+320x^2-50x+3.

A138163 Number of permutations of {1,2,...,n} containing exactly 5 occurrences of the pattern 132.

Original entry on oeis.org

5, 55, 394, 2225, 11539, 57064, 273612, 1283621, 5924924, 27005978, 121861262, 545368160, 2423923480, 10710273856, 47085144255, 206085075295, 898489543020, 3903621095130, 16906888008960, 73018012573950, 314540265217362
Offset: 5

Views

Author

Emeric Deutsch, Mar 28 2008

Keywords

Examples

			a(5)=5 because we have 13542, 14532, 15243, 15342 and 15423.
		

References

  • B. K. Nakamura, Computational methods in permutation patterns, PhD Dissertation, Rutgers University, May 2013.

Crossrefs

Column k=5 of A263771.

Programs

  • Maple
    a:=proc(n) options operator, arrow: (1/120)*(n^12+170*n^11 +1861*n^10 -88090*n^9 -307617*n^8 +27882510*n^7 -348117457*n^6 +2119611370*n^5 -6970280884*n^4 +10530947320*n^3 +2614396896*n^2 -30327454080*n +29059430400) *factorial(2*n-15) / (factorial(n)*factorial(n-7)) end proc: 5, 55, 394, seq(a(n), n = 8 .. 25);
  • Mathematica
    terms = 21; offset = 5;
    P[x_] := 14 x^5 - 17 x^4 + x^3 - 16 x^2 + 14 x - 2;
    Q[x_] := -50 x^11 - 2568 x^10 - 10826 x^9 + 16252 x^8 - 12466 x^7 + 16184 x^6 - 16480 x^5 + 9191 x^4 - 2893 x^3 + 520 x^2 - 50 x + 2;
    Drop[CoefficientList[(1/2) (P[x] + Q[x]/(1 - 4 x)^(9/2)) + O[x]^(terms + offset), x], offset] (* Jean-François Alcover, Dec 13 2017 *)

Formula

a(n) = (n^12+170n^11+1861n^10-88090n^9-307617n^8+27882510n^7 -348117457n^6 +2119611370n^5 -6970280884n^4 +10530947320n^3 +2614396896n^2 -30327454080n +29059430400)(2n-15)!/[120 n!(n-7)! ] for n>=8; a(5)=5; a(6)=55; a(7)=394.
G.f.: (1/2)[P(x) + Q(x)/(1-4x)^(9/2)], where P(x) = 14x^5 - 17x^4 + x^3 - 16x^2 + 14x - 2, Q(x)= -50x^11 - 2568x^10 - 10826x^9 + 16252x^8 - 12466x^7 + 16184x^6 - 16480x^5 + 9191x^4 - 2893x^3 + 520x^2 - 50x + 2.
Showing 1-4 of 4 results.