cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A002054 Binomial coefficient C(2n+1, n-1).

Original entry on oeis.org

1, 5, 21, 84, 330, 1287, 5005, 19448, 75582, 293930, 1144066, 4457400, 17383860, 67863915, 265182525, 1037158320, 4059928950, 15905368710, 62359143990, 244662670200, 960566918220, 3773655750150, 14833897694226, 58343356817424, 229591913401900
Offset: 1

Views

Author

Keywords

Comments

a(n) = number of permutations in S_{n+2} containing exactly one 312 pattern. E.g., S_3 has a_1 = 1 permutations containing exactly one 312 pattern, and S_4 has a_2 = 5 permutations containing exactly one 312 pattern, namely 1423, 2413, 3124, 3142, and 4231. This comment is also true if 312 is replaced by any of 132, 213, or 231 (but not 123 or 321, for which see A003517). [Comment revised by N. J. A. Sloane, Nov 26 2022]
Number of valleys in all Dyck paths of semilength n+1. Example: a(2)=5 because UD*UD*UD, UD*UUDD, UUDD*UD, UUD*UDD, UUUDDD, where U=(1,1), D=(1,-1) and the valleys are shown by *. - Emeric Deutsch, Dec 05 2003
Number of UU's (double rises) in all Dyck paths of semilength n+1. Example: a(2)=5 because UDUDUD, UDU*UDD, U*UDDUD, U*UDUDD, U*U*UDDD, the double rises being shown by *. - Emeric Deutsch, Dec 05 2003
Number of peaks at level higher than one (high peaks) in all Dyck paths of semilength n+1. Example: a(2)=5 because UDUDUD, UDUU*DD, UU*DDUD, UU*DU*DD, UUU*DDD, the high peaks being shown by *. - Emeric Deutsch, Dec 05 2003
Number of diagonal dissections of a convex (n+3)-gon into n regions. Number of standard tableaux of shape (n,n,1) (see Stanley reference). - Emeric Deutsch, May 20 2004
Number of dissections of a convex (n+3)-gon by noncrossing diagonals into several regions, exactly n-1 of which are triangular. Example: a(2)=5 because the convex pentagon ABCDE is dissected by any of the diagonals AC, BD, CE, DA, EB into regions containing exactly 1 triangle. - Emeric Deutsch, May 31 2004
Number of jumps in all full binary trees with n+1 internal nodes. In the preorder traversal of a full binary tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump. - Emeric Deutsch, Jan 18 2007
a(n) is the total number of nonempty Dyck subpaths in all Dyck paths (A000108) of semilength n. For example, the Dyck path UUDUUDDD has Dyck subpaths stretching over positions 1-8 (the entire path), 2-3, 2-7, 4-7, 5-6 and so contributes 5 to a(4). - David Callan, Jul 25 2008
a(n+1) is the total number of ascents in the set of all n-permutations avoiding the pattern 132. For example, a(2) = 5 because there are 5 ascents in the set 123, 213, 231, 312, 321. - Cheyne Homberger, Oct 25 2013
Number of increasing tableaux of shape (n+1,n+1) with largest entry 2n+1. An increasing tableau is a semistandard tableau with strictly increasing rows and columns, and set of entries an initial segment of the positive integers. Example: a(2) = 5 counts the five tableaux (124)(235), (123)(245), (124)(345), (134)(245), (123)(245). - Oliver Pechenik, May 02 2014
a(n) is the number of noncrossing partitions of 2n+1 into n-1 blocks of size 2 and 1 block of size 3. - Oliver Pechenik, May 02 2014
Number of paths in the half-plane x>=0, from (0,0) to (2n+1,3), and consisting of steps U=(1,1) and D=(1,-1). For example, for n=2, we have the 5 paths: UUUUD, UUUDU, UUDUU, UDUUU, DUUUU. - José Luis Ramírez Ramírez, Apr 19 2015
From Gus Wiseman, Aug 20 2021: (Start)
Also the number of binary numbers with 2n+2 digits and with two more 0's than 1's. For example, the a(2) = 5 binary numbers are: 100001, 100010, 100100, 101000, 110000, with decimal values 33, 34, 36, 40, 48. Allowing first digit 0 gives A001791, ranked by A345910/A345912.
Also the number of integer compositions of 2n+2 with alternating sum -2, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. For example, the a(3) = 21 compositions are:
(35) (152) (1124) (11141) (111113)
(251) (1223) (12131) (111212)
(1322) (13121) (111311)
(1421) (14111) (121112)
(2114) (121211)
(2213) (131111)
(2312)
(2411)
The following pertain to these compositions:
- The unordered version is A344741.
- Ranked by A345924 (reverse: A345923).
- A345197 counts compositions by length and alternating sum.
- A345925 ranks compositions with alternating sum 2 (reverse: A345922).
(End)

Examples

			G.f. = x + 5*x^2 + 21*x^3 + 84*x^4 + 330*x^5 + 1287*x^6 + 5005*x^7 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • George Grätzer, General Lattice Theory. Birkhauser, Basel, 1998, 2nd edition, p. 474, line -3.
  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Diagonal 4 of triangle A100257. Also a diagonal of A033282.
Equals (1/2) A024483(n+2). Bisection of A037951 and A037955.
Cf. A001263.
Column k=1 of A263771.
Counts terms of A031445 with 2n+2 digits in binary.
Cf. binomial(2*n+m, n): A000984 (m = 0), A001700 (m = 1), A001791 (m = 2), A002694 (m = 4), A003516 (m = 5), A002696 (m = 6), A030053 - A030056, A004310 - A004318.

Programs

  • GAP
    List([1..25],n->Binomial(2*n+1,n-1)); # Muniru A Asiru, Aug 09 2018
    
  • Magma
    [Binomial(2*n+1, n-1): n in [1..30]]; // Vincenzo Librandi, Apr 20 2015
    
  • Maple
    with(combstruct): seq((count(Composition(2*n+2), size=n)), n=1..24); # Zerinvary Lajos, May 03 2007
  • Mathematica
    CoefficientList[Series[8/(((Sqrt[1-4x] +1)^3)*Sqrt[1-4x]), {x,0,22}], x] (* Robert G. Wilson v, Aug 08 2011 *)
    a[ n_]:= Binomial[2 n + 1, n - 1]; (* Michael Somos, Apr 25 2014 *)
  • PARI
    {a(n) = binomial( 2*n+1, n-1)};
    
  • Python
    from _future_ import division
    A002054_list, b = [], 1
    for n in range(1,10**3):
        A002054_list.append(b)
        b = b*(2*n+2)*(2*n+3)//(n*(n+3)) # Chai Wah Wu, Jan 26 2016
    
  • Sage
    [binomial(2*n+1, n-1) for n in (1..25)] # G. C. Greubel, Mar 22 2019

Formula

a(n) = Sum_{j=0..n-1} binomial(2*j, j) * binomial(2*n - 2*j, n-j-1)/(j+1). - Yong Kong (ykong(AT)curagen.com), Dec 26 2000
G.f.: z*C^4/(2-C), where C=[1-sqrt(1-4z)]/(2z) is the Catalan function. - Emeric Deutsch, Jul 05 2003
From Wolfdieter Lang, Jan 09 2004: (Start)
a(n) = binomial(2*n+1, n-1) = n*C(n+1)/2, C(n)=A000108(n) (Catalan).
G.f.: (1 - 2*x - (1-3*x)*c(x))/(x*(1-4*x)) with g.f. c(x) of A000108. (End)
G.f.: z*C(z)^3/(1-2*z*C(z)), where C(z) is the g.f. of Catalan numbers. - José Luis Ramírez Ramírez, Apr 19 2015
G.f.: 2F1(5/2, 2; 4; 4*x). - R. J. Mathar, Aug 09 2015
D-finite with recurrence: a(n+1) = a(n)*(2*n+3)*(2*n+2)/(n*(n+3)). - Chai Wah Wu, Jan 26 2016
From Ilya Gutkovskiy, Aug 30 2016: (Start)
E.g.f.: (BesselI(0,2*x) + (1 - 1/x)*BesselI(1,2*x))*exp(2*x).
a(n) ~ 2^(2*n+1)/sqrt(Pi*n). (End)
a(n) = (1/(n+1))*Sum_{i=0..n-1} (n+1-i)*binomial(2n+2,i), n >= 1. - Taras Goy, Aug 09 2018
G.f.: (x - 1 + (1 - 3*x)/sqrt(1 - 4*x))/(2*x^2). - Michael Somos, Jul 28 2021
From Amiram Eldar, Jan 24 2022: (Start)
Sum_{n>=1} 1/a(n) = 5/3 - 2*Pi/(9*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 52*log(phi)/(5*sqrt(5)) - 7/5, where phi is the golden ratio (A001622). (End)
a(n) = A001405(2*n+1) - A000108(n+1), n >= 1 (from Eremin link, page 7). - Gennady Eremin, Sep 05 2023
G.f.: x/(1 - 4*x)^2 * c(-x/(1 - 4*x))^3, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - Peter Bala, Feb 03 2024
From Peter Bala, Oct 13 2024: (Start)
a(n) = Integral_{x = 0..4} x^n * w(x) dx, where the weight function w(x) = 1/(2*Pi) * sqrt(x)*(x - 3)/sqrt(4 - x) (see Penson).
G.f. x*/sqrt(1 - 4*x) * c(x)^3. (End)

A138159 Triangle read by rows: T(n,k) is the number of permutations of [n] having k occurrences of the pattern 321 (n>=1, 0<=k<=n(n-1)(n-2)/6).

Original entry on oeis.org

1, 1, 2, 5, 1, 14, 6, 3, 0, 1, 42, 27, 24, 7, 9, 6, 0, 4, 0, 0, 1, 132, 110, 133, 70, 74, 54, 37, 32, 24, 12, 16, 6, 6, 8, 0, 0, 5, 0, 0, 0, 1, 429, 429, 635, 461, 507, 395, 387, 320, 260, 232, 191, 162, 104, 130, 100, 24, 74, 62, 18, 32, 10, 30, 13, 8, 0, 10, 10, 0, 0, 0, 6, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Emeric Deutsch, Mar 27 2008

Keywords

Comments

Row n has 1 + n(n-1)(n-2)/6 terms.
Sum of row n is n! (A000142).
T(n,0) = A000108(n) (the Catalan numbers).
T(n,1) = A003517(n-1).
T(n,2) = A001089(n).
Sum_{k>=0} k * T(n,k) = A001810(n).

Examples

			T(4,2) = 3 because we have 4312, 4231 and 3421.
Triangle starts:
    1;
    1;
    2;
    5,   1;
   14,   6,   3,  0,  1;
   42,  27,  24,  7,  9,  6,  0,  4,  0,  0,  1;
  132, 110, 133, 70, 74, 54, 37, 32, 24, 12, 16, 6, 6, 8, 0, 0, 5, 0, 0, 0, 1;
  ...
		

Crossrefs

Programs

  • Maple
    # The following Maple program yields row 9 of the triangle; change the value of n to obtain other rows.
    n:=9: with(combinat): P:=permute(n): f:=proc(k) local L: L:=proc(j) local ct, i: ct:=0: for i to j-1 do if P[k][j] < P[k][i] then ct:=ct+1 else end if end do: ct end proc: add(L(j)*(L(j)+P[k][j]-j),j=1..n) end proc: a:=sort([seq(f(k),k=1..factorial(n))]): for h from 0 to (1/6)*n*(n-1)*(n-2) do c[h]:=0: for m to factorial(n) do if a[m]=h then c[h]:=c[h]+1 else end if end do end do: seq(c[h],h=0..(1/6)*n*(n-1)*(n-2));
    # second Maple program:
    b:= proc(s, c) option remember; (n-> `if`(n=0, x^c, add(b(s minus {j},
          (t-> (j-n+t)*t+c)(nops(select(x-> x>j, s)))), j=s)))(nops(s))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b({$1..n}, 0)):
    seq(T(n), n=0..9);  # Alois P. Heinz, Dec 01 2021
  • Mathematica
    ro[n_] := With[{}, P = Permutations[Range[n]]; f[k_] := With[{}, L[j_] := With[{}, ct = 0; Do[If[P[[k, j]] < P[[k, i]], ct = ct + 1], {i, 1, j - 1}]; ct]; Sum[L[j]*(L[j] + P[[k, j]] - j), {j, 1, n}]]; a = Sort[Table[f[k], {k, 1, n!}]]; Do[c[h] = 0; Do[If[a[[m]] == h, c[h] = c[h] + 1], {m, 1, n!}], {h, 0, (1/6)*n*(n - 1)*(n - 2)}]; Table[c[h], {h, 0, (1/6)*n*(n - 1)*(n - 2)}]]; Flatten[Table[ro[n], {n, 1, 7}]] (* Jean-François Alcover, Sep 01 2011, after Maple *)

Formula

The number of 321-patterns of a given permutation p of [n] is given by Sum(L[i]R[i],i=1..n), where L (R) is the left (right) inversion vector of p. L and R are related by R[i]+i=p[i]+L[i] (the given Maple program makes use of this approach). References contain formulas and generating functions for the first few columns (some are only conjectured).

A342840 Irregular triangle: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 4213. 0 <= k <= A342646(n).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 103, 10, 6, 1, 512, 77, 69, 30, 21, 5, 6, 2740, 548, 598, 330, 335, 123, 174, 58, 58, 37, 26, 3, 9, 1, 15485, 3799, 4686, 2970, 3411, 1676, 2338, 1040, 1317, 878, 777, 363, 608, 230, 252, 165, 133, 30, 93, 26, 31, 4, 1, 3, 4, 91245, 26165, 35148, 24550, 30182, 17185, 24685, 12976, 16867, 12248, 12360, 7203, 11086, 5692, 6391, 5194, 5006, 2751, 3917, 2019, 2482, 1622, 1371, 812, 1233, 490, 495, 416, 360, 157, 282, 54, 78, 41, 29, 22, 49, 7, 4, 0, 6
Offset: 0

Views

Author

Peter Kagey, Mar 24 2021

Keywords

Comments

The sequence is the same for the patterns 1342, 2431, and 3124.
The sequence appears to be the same for the patterns 1423, 2314, 3241, and 4132.
First column is given by A022558. Row sums given by n!.

Examples

			Triangle begins:
n\k |    0    1    2    3    4    5    6   7   8   9  10 11 12 13
----+-------------------------------------------------------------
  0 |    1;
  1 |    1;
  2 |    2;
  3 |    6;
  4 |   23,   1;
  5 |  103,  10,   6,   1;
  6 |  512,  77,  69,  30,  21,   5,   6;
  7 | 2740, 548, 598, 330, 335, 123, 174, 58, 58, 37, 26, 3, 9, 1;
		

Crossrefs

Cf. A263771 (analogous for 312).

Programs

  • Mathematica
    Join@@Array[Table[Length@Select[Permutations@Range@#,Length@Select[Subsets[#,{4}],Ordering@Ordering@#=={4,2,1,3}&]==k&],{k,0,Binomial[n+1,4]}]//.{a__,0}:>{a}&,8,0] (* Giorgos Kalogeropoulos, Mar 25 2021 *)

A342860 Irregular table read by rows: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 2413. 0 <= k <= A342854(n).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 103, 9, 8, 512, 62, 82, 34, 28, 2, 2740, 402, 612, 384, 466, 94, 232, 42, 60, 8, 15485, 2593, 4187, 3036, 4356, 1746, 3132, 1064, 1918, 909, 654, 333, 612, 144, 104, 22, 24, 1, 91245, 16921, 28065, 21638, 33274, 17598, 31180, 12942, 24000, 14290, 15434, 7770, 15692, 5965, 6896, 3947, 5660, 2226, 3674, 1314, 1512, 516, 508, 204, 332, 37, 40
Offset: 0

Views

Author

Peter Kagey, Mar 26 2021

Keywords

Comments

Equivalently the table for the pattern 3142.
First column is A022558.

Examples

			Triangle begins:
  n\k|       0       1        2        3        4        5        6
  ---+------------------------------------------------------------------
   0 |       1;
   1 |       1;
   2 |       2;
   3 |       6;
   4 |      23,      1;
   5 |     103,      9,       8;
   6 |     512,     62,      82,      34,      28,       2;
   7 |    2740,    402,     612,     384,     466,      94,     232, ...
   8 |   15485,   2593,    4187,    3036,    4356,    1746,    3132, ...
   9 |   91245,  16921,   28065,   21638,   33274,   17598,   31180, ...
  10 |  555662, 112196,  188514,  149946,  237128,  140954,  257686, ...
  11 | 3475090, 755920, 1278590, 1036826, 1658064, 1041598, 1933438, ...
		

Crossrefs

Analogous for other patterns: A008302 (12), A138159 (321), A263771 (312), A342840 (1342), A342861 (1324), A342862 (2143), A342863 (1243), A342864 (1432), A342865 (1234).

A001810 a(n) = n!*n*(n-1)*(n-2)/36.

Original entry on oeis.org

0, 0, 0, 1, 16, 200, 2400, 29400, 376320, 5080320, 72576000, 1097712000, 17563392000, 296821324800, 5288816332800, 99165306240000, 1952793722880000, 40311241850880000, 870722823979008000, 19645683716026368000, 462251381553561600000, 11325158848062259200000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the total number of 3-2-1 patterns in all permutations on [n]. This is because there are n! permutations, binomial(n,3) triples in each one and the probability that a given triple of entries in a random permutation form a 3-2-1 pattern (or any other specified pattern of length 3) is 1/6. - David Callan, Oct 26 2006
Old name was "Coefficients of Laguerre polynomials".

Examples

			G.f. = x^3 + 16*x^4 + 200*x^5 + 2400*x^6 + 29400*x^7 + 376320*x^8 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
  • Cornelius Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 519.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Factorial(n)*n*(n-1)*(n-2)/36: n in [0..20]]; // G. C. Greubel, May 16 2018
  • Maple
    [seq(n!*n*(n-1)*(n-2)/36,n=0..30)];
    with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r+1), right=Set(U, card=1)}, labeled]: subs(r=2, stack): seq(count(subs(r=2, ZL), size=m), m=0..20) ; # Zerinvary Lajos, Feb 07 2008
  • Mathematica
    Table[n! n*(n-1)*(n-2)/36, {n, 0, 20}] (* T. D. Noe, Aug 10 2012 *)
  • PARI
    for(n=0,20, print1(n!*n*(n-1)*(n-2)/36, ", ")) \\ G. C. Greubel, May 16 2018
    
  • Sage
    [factorial(m) * binomial(m, 3) / 6 for m in range(22)]  # Zerinvary Lajos, Jul 05 2008
    

Formula

a(n) = -A021009(n, 3), n >= 0. a(n) = ((n!/3!)^2)/(n-3)!, n >= 3.
E.g.f.: x^3/(3!*(1-x)^4).
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i) * x^(k-j) then a(n) = (-1)^(n-1) * f(n,3,-4), (n >= 3). - Milan Janjic, Mar 01 2009
a(n) = Sum_{k>0} k * A263771(n,k). - Alois P. Heinz, Oct 27 2015
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=3} 1/a(n) = 9*(2*e + gamma - Ei(1) - 4), where e = A001113, gamma = A001620, and Ei(1) = A091725.
Sum_{n>=3} (-1)^(n+1)/a(n) = 63*(gamma - Ei(-1)) - 36*(1/e + 1), where Ei(-1) = -A099285. (End)

Extensions

Edited by N. J. A. Sloane, Apr 12 2014

A342861 Irregular table read by rows: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 1324. 0 <= k <= A342853(n).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 103, 10, 6, 1, 513, 75, 74, 26, 17, 9, 6, 2762, 522, 645, 321, 290, 130, 166, 47, 54, 48, 41, 4, 8, 2, 15793, 3579, 5023, 3058, 3232, 1527, 2228, 874, 1159, 893, 875, 340, 503, 281, 269, 207, 156, 112, 123, 21, 54, 2, 0, 6, 5
Offset: 0

Views

Author

Peter Kagey, Mar 26 2021

Keywords

Comments

Equivalently the table for the pattern 4231.
First column is A061552.

Examples

			Triangle begins:
  n\k|       0        1        2        3        4        5        6
  ---+-------------------------------------------------------------------
   0 |       1;
   1 |       1;
   2 |       2;
   3 |       6;
   4 |      23,       1;
   5 |     103,      10,       6,       1;
   6 |     513,      75,      74,      26,      17,       9,       6;
   7 |    2762,     522,     645,     321,     290,     130,     166, ...
   8 |   15793,    3579,    5023,    3058,    3232,    1527,    2228, ...
   9 |   94776,   24670,   37549,   26174,   30409,   15966,   23762, ...
  10 |  591950,  172198,  277089,  213122,  264667,  154452,  228665, ...
  11 | 3824112, 1219974, 2043416, 1693787, 2213548, 1420513, 2086877, ...
		

Crossrefs

Analogous for other patterns: A008302 (12), A138159 (321), A263771 (312), A342840 (1342), A342860 (2413), A342862 (2143), A342863 (1243), A342864 (1432), A342865 (1234).

A342862 Irregular table read by rows: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 2143. 0 <= k <= A028723(n + 1).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 103, 11, 4, 2, 513, 88, 53, 33, 18, 8, 6, 0, 0, 1, 2761, 642, 495, 340, 262, 160, 172, 65, 58, 39, 14, 6, 18, 0, 0, 6, 0, 0, 2, 15767, 4567, 4099, 3007, 2692, 1832, 2171, 1152, 1291, 968, 728, 457, 566, 174, 176, 221, 129, 14, 122, 29, 38, 52, 8, 0, 32, 9, 0, 10, 0, 0, 8, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Peter Kagey, Mar 26 2021

Keywords

Comments

Equivalently the table for the pattern 3412.
First column is A005802.

Examples

			Triangle begins:
  n\k|       0        1        2        3        4        5        6
  ---+-------------------------------------------------------------------
   0 |       1;
   1 |       1;
   2 |       2;
   3 |       6;
   4 |      23,       1;
   5 |     103,      11,       4,       2;
   6 |     513,      88,      53,      33,      18,       8,       6, ...
   7 |    2761,     642,     495,     340,     262,     160,     172, ...
   8 |   15767,    4567,    4099,    3007,    2692,    1832,    2171, ...
   9 |   94359,   32443,   32345,   25049,   24492,   17732,   21841, ...
  10 |  586590,  232189,  250371,  203452,  211291,  160561,  201524, ...
  11 | 3763290, 1679295, 1926145, 1635315, 1776655, 1409304, 1787218, ...
		

Crossrefs

Analogous for other patterns: A008302 (12), A138159 (321), A263771 (312), A342840 (1342), A342860 (2413), A342861 (1324), A342863 (1243), A342864 (1432), A342865 (1234).

A342863 Irregular table read by rows: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 1243. 0 <= k <= A028723(n + 1).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 103, 11, 4, 2, 513, 88, 56, 32, 14, 7, 9, 0, 0, 1, 2761, 638, 543, 341, 235, 138, 173, 51, 42, 47, 34, 6, 17, 4, 0, 7, 1, 0, 2, 15767, 4478, 4600, 3119, 2658, 1710, 2180, 972, 975, 877, 771, 356, 542, 233, 184, 266, 157, 81, 130, 41, 60, 49, 16, 16, 37, 8, 9, 13, 3, 0, 10, 1, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Peter Kagey, Mar 26 2021

Keywords

Comments

Equivalently the table for the patterns 2134, 3421, and 4312.
First column is A005802.

Examples

			Table begins:
  n\k|       0        1        2        3        4        5        6
  ---+-------------------------------------------------------------------
   0 |       1;
   1 |       1;
   2 |       2;
   3 |       6;
   4 |      23,       1;
   5 |     103,      11,       4,       2;
   6 |     513,      88,      56,      32,      14,       7,       9, ...
   7 |    2761,     638,     543,     341,     235,     138,     173, ...
   8 |   15767,    4478,    4600,    3119,    2658,    1710,    2180, ...
   9 |   94359,   31199,   36691,   26602,   25756,   17628,   22984, ...
  10 |  586590,  218033,  284370,  218957,  231390,  166338,  221429, ...
  11 | 3763290, 1535207, 2174352, 1767837, 1994176, 1496134, 2028316, ...
		

Crossrefs

Analogous for other patterns: A008302 (12), A138159 (321), A263771 (312), A342840 (1342), A342860 (2413), A342861 (1324), A342862 (2143), A342864 (1432), A342865 (1234).

A342864 Irregular table read by rows: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 1432. 0 <= k <= A100354(n).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 103, 11, 5, 0, 1, 513, 87, 68, 17, 18, 10, 0, 4, 2, 0, 1, 2761, 625, 626, 268, 274, 138, 112, 58, 51, 44, 31, 9, 15, 8, 12, 0, 5, 0, 0, 0, 3, 15767, 4378, 5038, 2781, 3060, 1697, 1817, 1036, 964, 773, 656, 450, 379, 320, 285, 148, 237, 97, 98, 55, 68, 61, 23, 30, 30, 13, 30, 0, 0, 0, 16, 0, 10, 0, 0, 1, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Peter Kagey, Mar 26 2021

Keywords

Comments

Equivalently the table for the patterns 2341, 3214, and 4123.
First column is A005802.

Examples

			Table begins:
  n\k|       0        1        2        3        4        5        6
  ---+-------------------------------------------------------------------
   0 |       1;
   1 |       1;
   2 |       2;
   3 |       6;
   4 |      23,       1;
   5 |     103,      11,       5,       0,       1;
   6 |     513,      87,      68,      17,      18,      10,       0, ...
   7 |    2761,     625,     626,     268,     274,     138,     112, ...
   8 |   15767,    4378,    5038,    2781,    3060,    1697,    1817, ...
   9 |   94359,   30671,   38541,   24731,   28881,   17943,   21193, ...
  10 |  586590,  216883,  289785,  205853,  251051,  170941,  211942, ...
  11 | 3763290, 1552588, 2172387, 1663964, 2096207, 1535129, 1954751, ...
		

Crossrefs

Analogous for other patterns: A008302 (12), A138159 (321), A263771 (312), A342840 (1342), A342860 (2413), A342861 (1324), A342862 (2143), A342863 (1243), A342865 (1234).

A342865 Irregular table read by rows: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 1234. 0 <= k <= A000332(n).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 103, 12, 4, 0, 0, 1, 513, 102, 63, 10, 6, 12, 8, 0, 0, 5, 0, 0, 0, 0, 0, 1, 2761, 770, 665, 196, 146, 116, 142, 46, 10, 72, 32, 24, 0, 13, 0, 12, 18, 0, 0, 10, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Peter Kagey, Mar 26 2021

Keywords

Comments

Equivalently the table for the pattern 4321.
First column is A005802.

Examples

			Table begins:
  n\k|       0        1        2        3        4        5        6
  ---+-------------------------------------------------------------------
   0 |       1;
   1 |       1;
   2 |       2;
   3 |       6;
   4 |      23,       1;
   5 |     103,      12,       4,       0,       0,       1;
   6 |     513,     102,      63,      10,       6,      12,       8, ...
   7 |    2761,     770,     665,     196,     146,     116,     142, ...
   8 |   15767,    5545,    5982,    2477,    2148,    1204,    1782, ...
   9 |   94359,   39220,   49748,   25886,   25190,   13188,   19936, ...
  10 |  586590,  276144,  396642,  244233,  260505,  142550,  210663, ...
  11 | 3763290, 1948212, 3089010, 2167834, 2493489, 1476655, 2136586, ...
		

Crossrefs

Analogous for other patterns: A008302 (12), A138159 (321), A263771 (312), A342840 (1342), A342860 (2413), A342861 (1324), A342862 (2143), A342863 (1243), A342864 (1432).
Showing 1-10 of 14 results. Next