cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A002720 Number of partial permutations of an n-set; number of n X n binary matrices with at most one 1 in each row and column.

Original entry on oeis.org

1, 2, 7, 34, 209, 1546, 13327, 130922, 1441729, 17572114, 234662231, 3405357682, 53334454417, 896324308634, 16083557845279, 306827170866106, 6199668952527617, 132240988644215842, 2968971263911288999, 69974827707903049154, 1727194482044146637521, 44552237162692939114282
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the total number of increasing subsequences of all permutations of [1..n] (see Lifschitz and Pittel). - N. J. A. Sloane, May 06 2012
a(n) = A000142 + A001563 + A001809 + A001810 + A001811 + A001812 + ... these sequences respectively give the number of increasing subsequences of length i for i=0,1,2,... in all permutations of [1..n]. - Geoffrey Critzer, Jan 17 2013
a(n) is also the number of matchings in the complete bipartite graph K(n,n). - Sharon Sela (sharonsela(AT)hotmail.com), May 19 2002
a(n) is also the number of 12-avoiding signed permutations in B_n (see Simion ref).
a(n) is also the order of the symmetric inverse semigroup (monoid) I_n. - A. Umar, Sep 09 2008
EXP transform of A001048(n) = n! + (n-1)!. - Franklin T. Adams-Watters, Dec 28 2006
From Peter Luschny, Mar 27 2011: (Start)
Let B_{n}(x) = Sum_{j>=0} exp(j!/(j-n)!*x-1)/j!; then a(n) = 2! [x^2] Taylor(B_{n}(x)), where [x^2] denotes the coefficient of x^2 in the Taylor series for B_{n}(x).
a(n) is column 2 of the square array representation of A090210. (End)
a(n) is the Hosoya index of the complete bipartite graph K_{n,n}. - Eric W. Weisstein, Jul 09 2011
a(n) is also number of non-attacking placements of k rooks on an n X n board, summed over all k >= 0. - Vaclav Kotesovec, Aug 28 2012
Also the number of vertex covers and independent vertex sets in the n X n rook graph. - Eric W. Weisstein, Jan 04 2013
a(n) is the number of injective functions from subsets of [n] to [n] where [n]={1,2,...,n}. For a subset D of size k, there are n!/(n-k)! injective functions from D to [n]. Summing over all subsets, we obtain a(n) = Sum_{k=0..n} C(n,k)*n!/(n-k)! = Sum_{k=0..n} k!*C(n,k)^2. - Dennis P. Walsh, Nov 16 2015
Also the number of cliques in the n X n rook complement graph. - Eric W. Weisstein, Sep 14 2017
a(n)/n! is the expected value of the n-th term of Ulam's "history-dependent random sequence". See Kac (1989), Eq.(2). - N. J. A. Sloane, Nov 16 2019
a(2*n) is odd and a(2*n+1) is even for all n. More generally, for each positive integer k, a(n+k) == a(n) (mod k) for all n. It follows that for each positive integer k, the sequence obtained by reducing a(n) modulo k is periodic, with period dividing k. Various divisibility properties of the sequence follow from this: for example, a(7*n+2) == 0 (mod 7), a(11*n+4) == 0 (mod 11), a(17*n+3) == 0 (mod 17) and a(19*n+4) == 0 (mod 19). - Peter Bala, Nov 07 2022
Conjecture: a(n)*k is the sum of the largest parts in all integer partitions containing their own first differences with n + 1 parts and least part k. - John Tyler Rascoe, Feb 28 2024

Examples

			G.f. = 1 + 2*x + 7*x^2 + 34*x^3 + 209*x^4 + 1546*x^5 + 13327*x^6 + 130922*x^7 + ... - _Michael Somos_, Jul 31 2018
		

References

  • J. M. Howie, Fundamentals of semigroup theory. Oxford: Clarendon Press, (1995). [From A. Umar, Sep 09 2008]
  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 78.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 356.

Crossrefs

Main diagonal of A088699. Column of A283500. Row sums of A144084.
Column k=1 of A289192.
Cf. A364673.

Programs

  • Magma
    [Factorial(n)*Evaluate(LaguerrePolynomial(n), -1): n in [0..25]]; // G. C. Greubel, Aug 11 2022
    
  • Maple
    A002720 := proc(n) exp(-x)*n!*hypergeom([n+1], [1], x); simplify(subs(x=1, %)) end: seq(A002720(n), n=0..25); # Peter Luschny, Mar 30 2011
    A002720 := proc(n)
        option remember;
        if n <= 1 then
            n+1 ;
        else
            2*n*procname(n-1)-(n-1)^2*procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Mar 09 2017
  • Mathematica
    Table[n! LaguerreL[n, -1], {n, 0, 25}]
    Table[(-1)^n*HypergeometricU[-n, 1, -1], {n, 0, 25}] (* Jean-François Alcover, Jul 15 2015 *)
    RecurrenceTable[{(n+1)^2 a[n] - 2(n+2) a[n+1] + a[n+2]==0, a[1]==2, a[2]==7}, a, {n, 25}] (* Eric W. Weisstein, Sep 27 2017 *)
  • PARI
    a(n) = sum(k=0, n, k!*binomial(n, k)^2 );
    
  • PARI
    a(n) = suminf ( k=0, binomial(n+k,n)/k! ) / ( exp(1)/n! ) /* Gottfried Helms, Nov 25 2006 */
    
  • PARI
    {a(n)=n!^2*polcoeff(exp(x+x*O(x^n))*sum(m=0,n,x^m/m!^2),n)} /* Paul D. Hanna, Nov 18 2011 */
    
  • PARI
    {a(n)=if(n==0,1,polcoeff(1-sum(m=0, n-1, a(m)*x^m*(1-(m+1)*x+x*O(x^n))^2), n))} /* Paul D. Hanna, Nov 27 2012 */
    
  • PARI
    my(x='x+O('x^22)); Vec(serlaplace((1/(1-x))*exp(x/(1-x)))) \\ Joerg Arndt, Aug 11 2022
    
  • Python
    from math import factorial, comb
    def A002720(n): return sum(factorial(k)*comb(n,k)**2 for k in range(n+1)) # Chai Wah Wu, Aug 31 2023
  • SageMath
    [factorial(n)*laguerre(n, -1) for n in (0..25)] # G. C. Greubel, Aug 11 2022
    

Formula

a(n) = Sum_{k=0..n} k!*C(n, k)^2.
E.g.f.: (1/(1-x))*exp(x/(1-x)). - Don Knuth, Jul 1995
D-finite with recurrence: a(n) = 2*n*a(n-1) - (n-1)^2*a(n-2).
a(n) = Sum_{k>=0} (k+n)! / ((k!)^2*exp(1)). - Robert G. Wilson v, May 02 2002 [corrected by Vaclav Kotesovec, Aug 28 2012]
a(n) = Sum_{m>=0} (-1)^m*A021009(n, m). - Philippe Deléham, Mar 10 2004
a(n) = Sum_{k=0..n} C(n, k)n!/k!. - Paul Barry, May 07 2004
a(n) = Sum_{k=0..n} P(n, k)*C(n, k); a(n) = Sum_{k=0..n} n!^2/(k!*(n-k)!^2). - Ross La Haye, Sep 20 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling1(n, k)*Bell(k+1). - Vladeta Jovovic, Mar 18 2005
Define b(n) by b(0) = 1, b(n) = b(n-1) + (1/n) * Sum_{k=0..n-1} b(k). Then b(n) = a(n)/n!. - Franklin T. Adams-Watters, Sep 05 2005
Asymptotically, a(n)/n! ~ (1/2)*Pi^(-1/2)*exp(-1/2 + 2*n^(1/2))/n^(1/4) and so a(n) ~ C*BesselI(0, 2*sqrt(n))*n! with C = exp(-1/2) = 0.6065306597126334236... - Alec Mihailovs, Sep 06 2005, establishing a conjecture of Franklin T. Adams-Watters
a(n) = (n!/e) * Sum_{k>=0} binomial(n+k,n)/k!. - Gottfried Helms, Nov 25 2006
Integral representation as n-th moment of a positive function on a positive halfaxis (solution of the Stieltjes moment problem): a(n) = Integral_{x=0..oo} x^n*BesselI(0,2*sqrt(x))*exp(-x)/exp(1) dx, n >= 0. - Karol A. Penson and G. H. E. Duchamp (gduchamp2(AT)free.fr), Jan 09 2007
a(n) = n! * LaguerreL[n, -1].
E.g.f.: exp(x) * Sum_{n>=0} x^n/n!^2 = Sum_{n>=0} a(n)*x^n/n!^2. - Paul D. Hanna, Nov 18 2011
From Peter Bala, Oct 11 2012: (Start)
Denominators in the sequence of convergents coming from Stieltjes's continued fraction for A073003, the Euler-Gompertz constant G := Integral_{x = 0..oo} 1/(1+x)*exp(-x) dx:
G = 1/(2 - 1^2/(4 - 2^2/(6 - 3^2/(8 - ...)))). See [Wall, Chapter 18, (92.7) with a = 1]. The sequence of convergents to the continued fraction begins [1/2, 4/7, 20/34, 124/209, ...]. The numerators are in A002793. (End)
G.f.: 1 = Sum_{n>=0} a(n) * x^n * (1 - (n+1)*x)^2. - Paul D. Hanna, Nov 27 2012
E.g.f.: exp(x/(1-x))/(1-x) = G(0)/(1-x) where G(k) = 1 + x/((2*k+1)*(1-x) - x*(1-x)*(2*k+1)/(x + (1-x)*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 28 2012
a(n) = Sum_{k=0..n} L(n,k)*(k+1); L(n,k) the unsigned Lah numbers. - Peter Luschny, Oct 18 2014
a(n) = n! * A160617(n)/A160618(n). - Alois P. Heinz, Jun 28 2017
0 = a(n)*(-24*a(n+2) +99*a(n+3) -78*a(n+4) +17*a(n+5) -a(n+6)) +a(n+1)*(-15*a(n+2) +84*a(n+3) -51*a(n+4) +6*a(n+5)) +a(n+2)*(-6*a(n+2) +34*a(n+3) -15*a(n+4)) +a(n+3)*(+10*a(n+3)) for all n>=0. - Michael Somos, Jul 31 2018
a(n) = Sum_{k=0..n} C(n,k)*k!*A000262(n-k). - Geoffrey Critzer, Jan 07 2023
a(n) = A000262(n+1) - n * A000262(n). - Werner Schulte, Mar 29 2024
a(n) = denominator of (1 + n/(1 + n/(1 + (n-1)/(1 + (n-1)/(1 + ... + 1/(1 + 1/(1))))))). See A000262 for the numerators. - Peter Bala, Feb 11 2025

Extensions

2nd description from R. H. Hardin, Nov 1997
3rd description from Wouter Meeussen, Jun 01 1998

A053495 Triangle formed by coefficients of numerator polynomials defined by iterating f(u,v) = 1/u - x*v applied to a list of elements {1,2,3,4,...}.

Original entry on oeis.org

1, 1, -1, -1, 2, -2, 1, -4, 6, -6, -1, 6, -18, 24, -24, 1, -9, 36, -96, 120, -120, -1, 12, -72, 240, -600, 720, -720, 1, -16, 120, -600, 1800, -4320, 5040, -5040, -1, 20, -200, 1200, -5400, 15120, -35280, 40320, -40320, 1, -25, 300, -2400, 12600
Offset: 0

Views

Author

Wouter Meeussen, Jan 27 2001

Keywords

Examples

			1, 1 - x, -1 + 2*x - 2*x^2, 1 - 4*x + 6*x^2 - 6*x^3, ...
		

Crossrefs

Diagonals give A000142, A001563, A001286, A001809, A001754, A001810, A001755, A001811, A001777. Except for first term, row sums give negative of A058307.
Row sums of positive entries give A001053, those of negative entries give -1*A001040.

Programs

  • Mathematica
    CoefficientList[ #, x ]&/@Numerator[ FoldList[ (1/#1-x#2)&, 1, Range[ 12 ] ]//Together ]
    FoldList[(1/#1-x#2)&, 1, Range[4] ]//Together (a simpler version, which shows the rational functions)

Formula

Table[ (-1)^(r+c+1) binomial[Floor[(r+c)/2], Floor[(r-c)/2]] Floor[(r+c+1)/2]! / Floor[(r-c+1)/2]!, {r, 0, 7}, {c, 0, r}]
a[0] := -1; a[1] := 1-x; a[n_] := a[n]= n x a[n-1] + a[n-2] (matches sequence except for a[0]).

A263771 Triangle read by rows: T(n,k) (n>=0, k>=0) is the number of permutations of n and k occurrences of the pattern 312.

Original entry on oeis.org

1, 1, 2, 5, 1, 14, 5, 4, 1, 42, 21, 23, 14, 12, 5, 3, 132, 84, 107, 82, 96, 55, 64, 37, 29, 22, 10, 0, 2, 429, 330, 464, 410, 526, 394, 475, 365, 360, 298, 281, 175, 206, 126, 93, 55, 23, 14, 13, 1, 2, 1430, 1287, 1950, 1918, 2593, 2225, 2858, 2489, 2682, 2401
Offset: 0

Views

Author

Christian Stump, Oct 26 2015

Keywords

Comments

Row sums give A000142.
First column gives A000108.
Also the number of permutations of n and k occurrences of either of the fixed pattern 132, 213, 231 (these are all connected by reverses and inverses).
Columns k=1-5 give: A002054(n-2) for n>=3, A082970, A082971, A138162, A138163. - Alois P. Heinz, Oct 27 2015

Examples

			Triangle begins:
    1;
    1;
    2;
    5,  1;
   14,  5,   4,  1;
   42, 21,  23, 14, 12,  5,  3;
  132, 84, 107, 82, 96, 55, 64, 37, 29, 22, 10, 0, 2;
  ...
		

Crossrefs

Programs

  • Mathematica
    Join@@Array[Table[Length@Select[Permutations@Range@#,Length@Select[Subsets[#,{3}],Ordering@Ordering@#=={3,1,2}&]==k&],{k,0,Binomial[#+1,3]}]//.{a__,0}:>{a}&,8,0]  (* Giorgos Kalogeropoulos, Mar 26 2021 *)

Formula

Sum_{k>0} k * T(n,k) = A001810(n). - Alois P. Heinz, Oct 27 2015

Extensions

More terms from Alois P. Heinz, Oct 26 2015

A138159 Triangle read by rows: T(n,k) is the number of permutations of [n] having k occurrences of the pattern 321 (n>=1, 0<=k<=n(n-1)(n-2)/6).

Original entry on oeis.org

1, 1, 2, 5, 1, 14, 6, 3, 0, 1, 42, 27, 24, 7, 9, 6, 0, 4, 0, 0, 1, 132, 110, 133, 70, 74, 54, 37, 32, 24, 12, 16, 6, 6, 8, 0, 0, 5, 0, 0, 0, 1, 429, 429, 635, 461, 507, 395, 387, 320, 260, 232, 191, 162, 104, 130, 100, 24, 74, 62, 18, 32, 10, 30, 13, 8, 0, 10, 10, 0, 0, 0, 6, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Emeric Deutsch, Mar 27 2008

Keywords

Comments

Row n has 1 + n(n-1)(n-2)/6 terms.
Sum of row n is n! (A000142).
T(n,0) = A000108(n) (the Catalan numbers).
T(n,1) = A003517(n-1).
T(n,2) = A001089(n).
Sum_{k>=0} k * T(n,k) = A001810(n).

Examples

			T(4,2) = 3 because we have 4312, 4231 and 3421.
Triangle starts:
    1;
    1;
    2;
    5,   1;
   14,   6,   3,  0,  1;
   42,  27,  24,  7,  9,  6,  0,  4,  0,  0,  1;
  132, 110, 133, 70, 74, 54, 37, 32, 24, 12, 16, 6, 6, 8, 0, 0, 5, 0, 0, 0, 1;
  ...
		

Crossrefs

Programs

  • Maple
    # The following Maple program yields row 9 of the triangle; change the value of n to obtain other rows.
    n:=9: with(combinat): P:=permute(n): f:=proc(k) local L: L:=proc(j) local ct, i: ct:=0: for i to j-1 do if P[k][j] < P[k][i] then ct:=ct+1 else end if end do: ct end proc: add(L(j)*(L(j)+P[k][j]-j),j=1..n) end proc: a:=sort([seq(f(k),k=1..factorial(n))]): for h from 0 to (1/6)*n*(n-1)*(n-2) do c[h]:=0: for m to factorial(n) do if a[m]=h then c[h]:=c[h]+1 else end if end do end do: seq(c[h],h=0..(1/6)*n*(n-1)*(n-2));
    # second Maple program:
    b:= proc(s, c) option remember; (n-> `if`(n=0, x^c, add(b(s minus {j},
          (t-> (j-n+t)*t+c)(nops(select(x-> x>j, s)))), j=s)))(nops(s))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b({$1..n}, 0)):
    seq(T(n), n=0..9);  # Alois P. Heinz, Dec 01 2021
  • Mathematica
    ro[n_] := With[{}, P = Permutations[Range[n]]; f[k_] := With[{}, L[j_] := With[{}, ct = 0; Do[If[P[[k, j]] < P[[k, i]], ct = ct + 1], {i, 1, j - 1}]; ct]; Sum[L[j]*(L[j] + P[[k, j]] - j), {j, 1, n}]]; a = Sort[Table[f[k], {k, 1, n!}]]; Do[c[h] = 0; Do[If[a[[m]] == h, c[h] = c[h] + 1], {m, 1, n!}], {h, 0, (1/6)*n*(n - 1)*(n - 2)}]; Table[c[h], {h, 0, (1/6)*n*(n - 1)*(n - 2)}]]; Flatten[Table[ro[n], {n, 1, 7}]] (* Jean-François Alcover, Sep 01 2011, after Maple *)

Formula

The number of 321-patterns of a given permutation p of [n] is given by Sum(L[i]R[i],i=1..n), where L (R) is the left (right) inversion vector of p. L and R are related by R[i]+i=p[i]+L[i] (the given Maple program makes use of this approach). References contain formulas and generating functions for the first few columns (some are only conjectured).

A180512 Triangle of the number of alternating sign matrices according to the number of -1's.

Original entry on oeis.org

1, 2, 6, 1, 24, 16, 2, 120, 200, 94, 14, 1, 720, 2400, 2684, 1284, 310, 36, 2, 5040, 29400, 63308, 66158, 38390, 13037, 2660, 328, 26, 1
Offset: 1

Views

Author

Arvind Ayyer, Jan 20 2011

Keywords

Comments

The first column is the factorial, A000142.
The second column forms coefficients of Laguerre polynomials, A001810.
From Arvind Ayyer, Mar 15 2018: (Start)
Consider the row generating function A_n(x) = sum_k a(n,k) x^k. Then
A_n(0) = n!, A000142.
A_n(1) = number of ASM's, A005130.
A_n(2) = number of domino tilings of the Aztec diamond, A006125.
A_n(3) = 3-enumeration of n X n alternating-sign matrices, A059477. (End)

Examples

			In triangular format, the numbers of ASMs is as follows:
n=1:1
n=2:2
n=3:6,1
n=4:24,16,2
n=5:120,200,94,14,1
n=6:720,2400,2684,1284,310,36,2
n=7:5040,29400,63308,66158,38390,13037,2660,328,26,1
		

Crossrefs

Row sums are A005130

Extensions

T(7, 7) corrected by Arvind Ayyer, Feb 12 2018
Showing 1-5 of 5 results.