cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082985 Coefficient table for Chebyshev's U(2*n,x) polynomial expanded in decreasing powers of (-4*(1-x^2)).

Original entry on oeis.org

1, 1, 3, 1, 5, 5, 1, 7, 14, 7, 1, 9, 27, 30, 9, 1, 11, 44, 77, 55, 11, 1, 13, 65, 156, 182, 91, 13, 1, 15, 90, 275, 450, 378, 140, 15, 1, 17, 119, 442, 935, 1122, 714, 204, 17, 1, 19, 152, 665, 1729, 2717, 2508, 1254, 285, 19
Offset: 0

Views

Author

Gary W. Adamson, May 29 2003

Keywords

Comments

Sum of row #n = A000204(2n+1), i.e., A002878(n).
Row #n has the unsigned coefficients of a polynomial whose roots are 2 sin(2*Pi*k/(2n+1)) [for k=1 to 2n].
The positive roots are the diagonal lengths of a regular (2n+1)-gon, inscribed in the unit circle.
Polynomial of row #n = Sum_{m=0..n} (-1)^m T(n,m) x^(2n-2m).
This is also the unsigned coefficient table of Chebyshev's 2*T(2*n+1,x) polynomials expanded in decreasing odd powers of 2*x. - Wolfdieter Lang, Mar 07 2007
The n-th row are the coefficients of the polynomial S(n) where S(0)=1, S(1)=x+3, and S(n) = (x+2)*S(n-1) - S(n-2) (see Sun link). - Michel Marcus, Mar 07 2016

Examples

			Expansion of polynomials:
  x^0;
  x^2  -  3*x^0;
  x^4  -  5*x^2 +  5*x^0;
  x^6  -  7*x^4 + 14*x^2 -  7*x^0;
  x^8  -  9*x^6 + 27*x^4 - 30*x^2 +  9*x^0;
  x^10 - 11*x^8 + 44*x^6 - 77*x^4 + 55*x^2 - 11*x^0; ...
Polynomial #4 has 8 roots: 2*sin(2*Pi*k/9) for k=1 to 8.
Coefficients (with signs removed) are
  1;
  1,  3;
  1,  5,  5;
  1,  7, 14,  7;
  1,  9, 27, 30,  9;
  1, 11, 44, 77, 55, 11;
  ...
		

References

  • J. D'Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces, CRC Press, 1992; see pp. 151,175.
  • Stephen Eberhart, "Mathematical-Physical Correspondence," Number 37-38, Jan 08, 1982.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

Crossrefs

Cf. companion triangle A084534.

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> Binomial(2*n-k,k)*(2*n+1)/(2*n-2*k+1) ))); # G. C. Greubel, Dec 30 2019
  • Magma
    [Binomial(2*n-k,k)*(2*n+1)/(2*n-2*k+1): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 30 2019
    
  • Maple
    A082985 := proc(n,m)
        binomial(2*n-m,m)*(2*n+1)/(2*n-2*m+1) ;
    end proc: # R. J. Mathar, Sep 08 2013
  • Mathematica
    T[n_, m_]:= Binomial[2*n-m, m]*(2*n+1)/(2*n-2*m+1); Table[T[n, m], {n, 0, 9}, {m, 0, n}]//Flatten (* Jean-François Alcover, Oct 08 2013, after R. J. Mathar *)
  • PARI
    T(n,k)=binomial(2*n-k,k)*(2*n+1)/(2*n-2*k+1); \\ G. C. Greubel, Dec 30 2019
    
  • Sage
    [[binomial(2*n-k,k)*(2*n+1)/(2*n-2*k+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 30 2019
    

Formula

Triangle read by rows: row #n has n+1 terms. T(n,0)=1, T(n,n)=2n+1, T(n,m) = T(n-1,m-1) + Sum_{k=0..m} T(n-1-k, m-k).
T(k, s) = ((2k+1)/(2s+1))*binomial(k+s, 2s), 0 <= s <= k; then transpose the triangle. - Gary W. Adamson, May 29 2003
From Wolfdieter Lang, Mar 07 2007: (Start)
Signed version: a(n,m)=0 if n < m, otherwise a(n,m) = ((-1)^m)*binomial(2*n+1-m,m)*(2*n+1)/(2*n+1-m). From the Rivlin reference, p. 37, eq.(1.92), using the differential eq. for T(2*n+1,x). Also from Waring's formula.
Signed version: a(n,m)=0 if n < m, otherwise a(n,m) = ((-1)^m)*(Sum_{k=0..n-m} binomial(m+k,k)*binomial(2*n+1,2*(k+m)))/2^(2*(n-m)). Proof: De Moivre's formula for cos((2*n+1)*phi) rewritten in terms of odd powers of cos(phi). Cf. Rivlin reference p. 4, eq.(1.10).
Signed version: a(n,m) = A084930(n,n-m)/2^(2*(n-m)) (scaled coefficients of Chebyshev's T(2*n+1,x), decreasing odd powers).
Unsigned version: a(n,m)=0 if n < m, otherwise a(n,m) = binomial(2*n-m,m)*(2*n+1)/(2*(n-m)+1). From the differential eq. for U(2*n,x). (End)
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-2). - Philippe Deléham, Feb 24 2012
Sum_{i>=0} T(n-i,n-2*i) = A003945(n). - Philippe Deléham, Feb 24 2012
Sum_{i>=0} T(n-i, n-2*i)*4^i = 3^n = A000244(n). - Philippe Deléham, Feb 24 2012
From Paul Weisenhorn Nov 25 2019: (Start)
T(r,k) = binomial(2*r-k,k-1) + binomial(2*r-1-k,k-2) with 1 <= r and 1 <= k <= r.
For a given n, one gets r = floor((1+sqrt(8*n))/2), k = n-(r^2-r)/2, a(n) = binomial(2*r-k,k-1) + binomial(2*r-1-k,k-2). (End)

Extensions

Edited by Anne Donovan (anned3005(AT)aol.com), Jun 11 2003
Re-edited by Don Reble, Nov 12 2005