A083026 Numbers that are congruent to {0, 2, 4, 5, 7, 9, 11} mod 12.
0, 2, 4, 5, 7, 9, 11, 12, 14, 16, 17, 19, 21, 23, 24, 26, 28, 29, 31, 33, 35, 36, 38, 40, 41, 43, 45, 47, 48, 50, 52, 53, 55, 57, 59, 60, 62, 64, 65, 67, 69, 71, 72, 74, 76, 77, 79, 81, 83, 84, 86, 88, 89, 91, 93, 95, 96, 98, 100, 101, 103, 105, 107, 108, 110
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Wikipedia, Scale Music
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1).
Crossrefs
Cf. A291454.
A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): this sequence
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Phrygian mode (E): A083034
Locrian mode (B): A082977
Chords:
Major chord: A083030
Minor chord: A083031
Dominant seventh chord: A083032
Programs
-
Magma
[n : n in [0..150] | n mod 12 in [0, 2, 4, 5, 7, 9, 11]]; // Wesley Ivan Hurt, Jul 20 2016
-
Maple
A083026:=n->12*floor(n/7)+[0, 2, 4, 5, 7, 9, 11][(n mod 7)+1]: seq(A083026(n), n=0..100); # Wesley Ivan Hurt, Jul 20 2016
-
Mathematica
Select[Range[0, 150], MemberQ[{0, 2, 4, 5, 7, 9, 11}, Mod[#, 12]] &] (* Wesley Ivan Hurt, Jul 20 2016 *) LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 2, 4, 5, 7, 9, 11, 12}, 70] (* Jianing Song, Sep 22 2018 *) Quotient[12*Range[60], 7] - 1 (* Federico Provvedi, Sep 10 2022 *)
-
PARI
a(n)=[-1, 0, 2, 4, 5, 7, 9][n%7+1] + n\7*12 \\ Charles R Greathouse IV, Jul 20 2016
-
PARI
x='x+O('x^99); concat(0, Vec(x^2*(x+1)*(x^5+x^4+x^3+x^2+2)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018
Formula
G.f.: x^2*(x + 1)*(x^5 + x^4 + x^3 + x^2 + 2)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jul 20 2016: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.
a(n) = (84*n - 70 - 2*(n mod 7) - 2*((n + 1) mod 7) - 2*((n + 2) mod 7) + 5*((n + 3) mod 7) - 2*((n + 4) mod 7) - 2*((n + 5) mod 7) + 5*((n + 6) mod 7))/49.
a(7k) = 12k - 1, a(7k-1) = 12k - 3, a(7k-2) = 12k - 5, a(7k-3) = 12k - 7, a(7k-4) = 12k - 8, a(7k-5) = 12k - 10, a(7k-6) = 12k - 12. (End)
a(n) = a(n-7) + 12 for n > 7. - Jianing Song, Sep 22 2018
Comments