cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A083086 a(n) = (2^(n+1) + (-4)^n)/3.

Original entry on oeis.org

1, 0, 8, -16, 96, -320, 1408, -5376, 22016, -87040, 350208, -1396736, 5595136, -22364160, 89489408, -357892096, 1431699456, -5726535680, 22906667008, -91625619456, 366504574976, -1466014105600, 5864064811008, -23456242466816, 93825003421696, -375299946577920
Offset: 0

Views

Author

Paul Barry, Apr 23 2003

Keywords

Comments

Binomial transform of A083085.

Crossrefs

Programs

Formula

a(n) = (2*2^n + (-4)^n)/3.
G.f.: (1+2*x)/((1+4*x)*(1-2*x)).
E.g.f.: (2*exp(2*x) + exp(-4*x))/3.
a(n) = (-1)^n*A000079(n)*A078008(n). - Paul Barry, Feb 12 2004
a(n) = -2*a(n-1) + 8*a(n-2). - Vincenzo Librandi, Nov 12 2011

A208532 Mirror image of triangle in A125185; unsigned version of A120058.

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 4, 9, 10, 4, 5, 16, 28, 24, 8, 6, 25, 60, 80, 56, 16, 7, 36, 110, 200, 216, 128, 32, 8, 49, 182, 420, 616, 560, 288, 64, 9, 64, 280, 784, 1456, 1792, 1408, 640, 128, 10, 81, 408, 1344, 3024, 4704, 4992, 3456, 1408, 256
Offset: 0

Views

Author

Philippe Deléham, Feb 27 2012

Keywords

Comments

Subtriangle of the triangle given by (1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Equals A007318*A134309*A097806 as infinite lower triangular matrix.
Row sums are powers of 3 (A000244).
Diagonal sums are powers of 2 (A000079).

Examples

			Triangle begins :
1
2, 1
3, 4, 2
4, 9, 10, 4
5, 16, 28, 24, 8
6, 25, 60, 80, 56, 16
7, 36, 110, 200, 216, 128, 32
8, 49, 182, 420, 616, 560, 288, 64
9, 64, 280, 784, 1456, 1792, 1408, 640, 128
10, 81, 408, 1344, 3024, 4704, 4992, 3456, 1408, 256
Triangle (1, 1, -1, 1, 0, 0, 0, ...) DELTA (0, 1, 1, 0, 0, 0, ...) begins :
1
1, 0
2, 1, 0
3, 4, 2, 0
4, 9, 10, 4, 0
5, 16, 28, 24, 8, 0
6, 25, 60, 80, 56, 16, 0
		

Crossrefs

Cf. Columns: A000027, A000290, A006331, A112742.
Cf. Diagonals: A011782, 2*A045623,

Formula

T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - 2*T(n-1,k-1), T(0,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n.
G.f.: (1-y*x)/((1-x)*(1-(1+2*y)*x)).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A083085(n), A084567(n), A000012(n), A000027(n+1), A000244(n), A083065(n), A083076(n) for x = -3, -2, -1, 0, 1, 2, 3 respectively.
Showing 1-2 of 2 results.