cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A139818 Squares of Jacobsthal numbers.

Original entry on oeis.org

0, 1, 1, 9, 25, 121, 441, 1849, 7225, 29241, 116281, 466489, 1863225, 7458361, 29822521, 119311929, 477204025, 1908903481, 7635439161, 30542106169, 122167725625, 488672300601, 1954686406201, 7818751217209, 31274993684025
Offset: 0

Views

Author

Paul Curtz, May 17 2008

Keywords

Comments

Run length transform gives A246035. - N. J. A. Sloane, Feb 26 2015

Crossrefs

Cf. A001045, A246035. First differences give (apart from signs) A083086.

Programs

  • Magma
    [1/9-(2/9)*(-2)^n+(1/9)*4^n: n in [0..35]]; // Vincenzo Librandi, Aug 09 2011
    
  • Mathematica
    LinearRecurrence[{3, 6, -8}, {0, 1, 1}, 25] (* Jean-François Alcover, Jan 09 2019 *)
  • PARI
    concat (0, Vec(x*(1-2*x)/((1-x)*(1+2*x)*(1-4*x)) + O(x^30))) \\ Michel Marcus, Mar 04 2015

Formula

a(n) = 3*a(n-1) + 6*a(n-2) - 8*a(n-3).
a(n) = (A001045(n))^2.
G.f.: x*(1-2*x)/((1-x)*(1+2*x)*(1-4*x)).

Extensions

More terms from R. J. Mathar, Dec 12 2009

A192382 Coefficient of x in the reduction by x^2 -> x+2 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

0, 2, 4, 24, 80, 352, 1344, 5504, 21760, 87552, 349184, 1398784, 5591040, 22372352, 89473024, 357924864, 1431633920, 5726666752, 22906404864, 91626143744, 366503526400, 1466016202752, 5864060616704, 23456250855424, 93824986644480
Offset: 1

Views

Author

Clark Kimberling, Jun 30 2011

Keywords

Comments

The polynomial p(n,x) is defined by ((x+d)^n - (x-d)^n)/(2*d), where d = sqrt(x+2). For an introduction to reductions of polynomials by substitutions such as x^2 -> x+2, see A192232.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
  p(0, x) = 1 -> 1.
  p(1, x) = 2*x -> 2*x.
  p(2, x) = 2 + x + 3*x^2 -> 8 + 4*x.
  p(3, x) = 8*x + 4*x^2 + 4*x^3 -> 16 + 24*x.
  p(4, x) = 4 + 4*x + 21*x^2 + 10*x^3 + 5*x^4 -> 96 + 80*x.
From these, read A083086 = (1, 0, 9, 16, 96, ...) and A192382 =(0, 2, 4, 24, 80, ...).
		

Crossrefs

Programs

  • Magma
    [(4^(n-1) - (-2)^(n-1))/3: n in [1..40]]; // G. C. Greubel, Feb 19 2023
    
  • Maple
    seq(4^n*(1-(-1/2)^n)/3, n=0..24); # Peter Luschny, Oct 02 2019
  • Mathematica
    q[x_]:= x+2; d= Sqrt[x+2];
    p[n_, x_]:= ((x+d)^n - (x-d)^n)/(2 d); (* suggested by A162517 *)
    Table[Expand[p[n, x]], {n, 6}]
    reductionRules= {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x*q[x]^((y- 1)/2)};
    t = Table[FixedPoint[Expand[#1/. reductionRules] &, p[n,x]], {n,30}];
    Table[Coefficient[Part[t,n], x, 0], {n,30}] (* abs value of A083086 *)
    Table[Coefficient[Part[t,n], x, 1], {n,30}] (* 2*A003683 *)
    Table[Coefficient[Part[t,n]/2, x, 1], {n,30}] (* A003683 *)
    LinearRecurrence[{2,8}, {0,2}, 40] (* G. C. Greubel, Feb 19 2023 *)
  • SageMath
    [(4^(n-1) - (-2)^(n-1))/3 for n in range(1,41)] # G. C. Greubel, Feb 19 2023

Formula

Conjectures from Colin Barker, May 12 2014: (Start)
a(n) = 2^(n-2)*(2*(-1)^n + 2^n)/3 = 2*A003683(n-1).
a(n) = 2*a(n-1) + 8*a(n-2).
G.f.: 2*x^2 / ((1+2*x)*(1-4*x)). (End).
a(n) = 4^n*(1 - (-1/2)^n)/3. - Peter Luschny, Oct 02 2019
E.g.f: (1/3)*(2 + exp(2*x))*(sinh(x))^2. - G. C. Greubel, Feb 19 2023

A140944 Triangle T(n,k) read by rows, the k-th term of the n-th differences of the Jacobsthal sequence A001045.

Original entry on oeis.org

0, 1, 0, -1, 2, 0, 3, -2, 4, 0, -5, 6, -4, 8, 0, 11, -10, 12, -8, 16, 0, -21, 22, -20, 24, -16, 32, 0, 43, -42, 44, -40, 48, -32, 64, 0, -85, 86, -84, 88, -80, 96, -64, 128, 0, 171, -170, 172, -168, 176, -160, 192, -128, 256, 0, -341, 342, -340, 344, -336, 352, -320, 384, -256, 512, 0
Offset: 0

Views

Author

Paul Curtz, Jul 24 2008

Keywords

Comments

A variant of the triangle A140503, now including the diagonal.
Since the diagonal contains zeros, rows sums are those of A140503.

Examples

			Triangle begins as:
    0;
    1,   0;
   -1,   2,   0;
    3,  -2,   4,  0;
   -5,   6,  -4,  8,   0;
   11, -10,  12, -8,  16,  0;
  -21,  22, -20, 24, -16, 32,  0;
		

Crossrefs

Programs

  • Magma
    [2^k*(1-(-2)^(n-k))/3: k in [0..n], n in [0..15]]; // G. C. Greubel, Feb 18 2023
    
  • Maple
    A001045:= n -> (2^n-(-1)^n)/3;
    A140944:= proc(n,k) if n = 0 then A001045(k); else procname(n-1,k+1)-procname(n-1,k) ; fi; end:
    seq(seq(A140944(n,k),k=0..n),n=0..10); # R. J. Mathar, Sep 07 2009
  • Mathematica
    T[0, 0]=0; T[1, 0]= T[0, 1]= 1; T[0, k_]:= T[0, k]= T[0, k-1] + 2*T[0, k-2]; T[n_, n_]=0; T[n_, k_]:= T[n, k] = T[n-1, k+1] - T[n-1, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Dec 17 2014 *)
    Table[2^k*(1-(-2)^(n-k))/3, {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2023 *)
  • PARI
    T(n, k) = (2^k - 2^n*(-1)^(n+k))/3 \\ Jianing Song, Aug 11 2022
    
  • SageMath
    def A140944(n,k): return 2^k*(1 - (-2)^(n-k))/3
    flatten([[A140944(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Feb 18 2023

Formula

T(n, k) = T(n-1, k+1) - T(n-1, k). T(0, k) = A001045(k).
T(n, k) = (2^k - 2^n*(-1)^(n+k))/3, for n >= k >= 0. - Jianing Song, Aug 11 2022
From G. C. Greubel, Feb 18 2023: (Start)
T(n, n-1) = A000079(n).
T(2*n, n) = (-1)^(n+1)*A192382(n+1).
T(2*n, n-1) = (-1)^n*A246036(n-1).
T(2*n, n+1) = A083086(n).
T(3*n, n) = -A115489(n).
Sum_{k=0..n} T(n, k) = A052992(n)*[n>0] + 0*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = A045883(n).
Sum_{k=0..n} 2^k*T(n, k) = A084175(n).
Sum_{k=0..n} (-2)^k*T(n, k) = (-1)^(n+1)*A109765(n).
Sum_{k=0..n} 3^k*T(n, k) = A091056(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = (-1)^(n+1)*A097038(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (-1)^(n+1)*A138495(n). (End)

Extensions

Edited and extended by R. J. Mathar, Sep 07 2009

A083085 a(n) = (2+(-5)^n)/3.

Original entry on oeis.org

1, -1, 9, -41, 209, -1041, 5209, -26041, 130209, -651041, 3255209, -16276041, 81380209, -406901041, 2034505209, -10172526041, 50862630209, -254313151041, 1271565755209, -6357828776041, 31789143880209, -158945719401041, 794728597005209, -3973642985026041
Offset: 0

Views

Author

Paul Barry, Apr 23 2003

Keywords

Comments

Inverse binomial transform of A083086.

Crossrefs

Cf. A083086.

Programs

Formula

a(n) = (2+(-5)^n)/3.
G.f.: (1+3*x)/((1+5*x)*(1-x)).
E.g.f.: (2*exp(x)+exp(-5*x))/3.
a(n) = -5*a(n-1) + 4. - Vincenzo Librandi, Nov 12 2011
Showing 1-4 of 4 results.