A083105 Second-order linear recurrence sequence with a(n) = a(n-1) + a(n-2), with initial terms 62638280004239857, 49463435743205655.
62638280004239857, 49463435743205655, 112101715747445512, 161565151490651167, 273666867238096679, 435232018728747846, 708898885966844525, 1144130904695592371, 1853029790662436896, 2997160695358029267, 4850190486020466163, 7847351181378495430
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..4705
- Arturas Dubickas, Aivaras Novikas and Jonas Šiurys, A binary linear recurrence sequence of composite numbers, Journal of Number Theory, Volume 130, Issue 8, August 2010, Pages 1737-1749.
- R. L. Graham, A Fibonacci-Like sequence of composite numbers, Math. Mag. 37 (1964) 322-324.
- D. Ismailescu and J. Son, A New Kind of Fibonacci-Like Sequence of Composite Numbers, J. Int. Seq. 17 (2014) # 14.8.2.
- Tanya Khovanova, Recursive Sequences
- D. E. Knuth, A Fibonacci-like sequence of composite numbers, Math. Mag. 63 (1) (1990) 21-25.
- J. W. Nicol, A Fibonacci-like sequence of composite numbers, The Electronic Journal of Combinatorics, Volume 6 (1999), Research Paper #R44.
- Carlos Rivera, Problem 31. Fibonacci- all composites sequence, The Prime Puzzles and Problems Connection.
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Crossrefs
Programs
-
Maple
a:= n-> (<<0|1>, <1|1>>^n. <<62638280004239857, 49463435743205655>>)[1, 1]: seq(a(n), n=0..20); # Alois P. Heinz, Sep 20 2021
-
Mathematica
LinearRecurrence[{1,1},{62638280004239857,49463435743205655},20] (* Paolo Xausa, Nov 07 2023 *)
Formula
G.f.: (62638280004239857-13174844261034202*x)/(1-x-x^2). [Colin Barker, Jun 19 2012]
Extensions
Name clarified by Robert C. Lyons, Feb 07 2025
Comments