A083140 Sieve of Eratosthenes arranged as an array and read by antidiagonals in the up direction; n-th row has property that smallest prime factor is prime(n).
2, 3, 4, 5, 9, 6, 7, 25, 15, 8, 11, 49, 35, 21, 10, 13, 121, 77, 55, 27, 12, 17, 169, 143, 91, 65, 33, 14, 19, 289, 221, 187, 119, 85, 39, 16, 23, 361, 323, 247, 209, 133, 95, 45, 18, 29, 529, 437, 391, 299, 253, 161, 115, 51, 20, 31, 841, 667, 551, 493, 377, 319, 203, 125, 57, 22
Offset: 2
Examples
Array begins: 2 4 6 8 10 12 14 16 18 20 22 24 .... (A005843 \ {0}) 3 9 15 21 27 33 39 45 51 57 63 69 .... (A016945) 5 25 35 55 65 85 95 115 125 145 155 175 .... (A084967) 7 49 77 91 119 133 161 203 217 259 287 301 .... (A084968) 11 121 143 187 209 253 319 341 407 451 473 517 .... (A084969) 13 169 221 247 299 377 403 481 533 559 611 689 .... (A084970)
Links
Crossrefs
Cf. A083141 (main diagonal), A083221 (transpose), A004280, A038179, A084967, A084968, A084969, A084970, A084971.
Arrays of integers grouped into rows by various criteria:
by greatest prime factor: A125624,
by lowest prime factor: this sequence (upward antidiagonals), A083221 (downward antidiagonals),
by number of distinct prime factors: A125666,
by number of prime factors counted with multiplicity: A078840,
by prime signature: A095904,
by ordered prime signature: A096153,
by number of divisors: A119586,
by distance to next prime: A192179.
Programs
-
Mathematica
a = Join[ {Table[2n, {n, 1, 12}]}, Table[ Take[ Prime[n]*Select[ Range[100], GCD[ Prime[n] #, Product[ Prime[i], {i, 1, n - 1}]] == 1 &], 12], {n, 2, 12}]]; Flatten[ Table[ a[[i, n - i]], {n, 2, 12}, {i, n - 1, 1, -1}]] (* second program: *) rows = 12; Clear[T]; Do[For[m = p = Prime[n]; k = 1, k <= rows, m += p, If[ FactorInteger[m][[1, 1]] == p, T[n, k++] = m]], {n, rows}]; Table[T[n - k + 1, k], {n, rows}, {k, n}] // Flatten (* Jean-François Alcover, Mar 08 2016 *)
Extensions
More terms from Hugo Pfoertner and Robert G. Wilson v, Jun 13 2003
Comments