A083147
a(1) = 1, a(n) = smallest nontrivial palindromic multiple of a(n-1). a(n) is not equal to a(n-1) or a concatenation of a(n-1) with itself.
Original entry on oeis.org
1, 2, 4, 8, 232, 464, 42224, 84448, 4053504, 44588544, 4057557504, 4053504004053504, 44588544044588544, 4057557508057557504, 401341233733484337332143104, 40130110362352332623325326301103104, 441431213985875658856578589312134144
Offset: 1
Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 25 2003
A090251
a(n) =29a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 29.
Original entry on oeis.org
2, 29, 839, 24302, 703919, 20389349, 590587202, 17106639509, 495501958559, 14352450158702, 415725552643799, 12041688576511469, 348793243166188802, 10102962363242963789, 292637115290879761079, 8476373381072270107502
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 24 2004
a(4) =703919 = 29a(3) - a(2) = 29*24302 - 839= ((29+sqrt(837))/2)^4 + ((29-sqrt(837))/2)^4 = 703918.99999857 + 0.00000142 =703919.
(x,y) = (2;0), (29;1), (839;29), (24302,840), ..., give the
nonnegative integer solutions to x^2 - 93*(3*y)^2 =+4.
- O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).
a(n)=sqrt(4 + 93*(3*
A097782(n-1))^2), n>=1.
-
a[0] = 2; a[1] = 29; a[n_] := 29a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
LinearRecurrence[{29,-1},{2,29},30] (* Harvey P. Dale, May 28 2013 *)
-
[lucas_number2(n,29,1) for n in range(0,16)] # Zerinvary Lajos, Jun 27 2008
Showing 1-2 of 2 results.
Comments