cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A376703 3-brilliant numbers: numbers which are the product of three primes having the same number of decimal digits.

Original entry on oeis.org

8, 12, 18, 20, 27, 28, 30, 42, 45, 50, 63, 70, 75, 98, 105, 125, 147, 175, 245, 343, 1331, 1573, 1859, 2057, 2197, 2299, 2431, 2717, 2783, 2873, 3179, 3211, 3289, 3509, 3553, 3751, 3757, 3887, 3971, 4147, 4199, 4301, 4433, 4477, 4693, 4807, 4901, 4913, 4961, 5083
Offset: 1

Views

Author

Paolo Xausa, Oct 02 2024

Keywords

Examples

			4961 is a term because 4961 = 11 * 11 * 41, and these three prime factors have the same number of digits.
		

Crossrefs

Subsequence of A014612.

Programs

  • Mathematica
    A376703Q[k_] := With[{f = FactorInteger[k]}, Total[f[[All, 2]]] == 3 && Length[Union[IntegerLength[f[[All, 1]]]]] == 1];
    Select[Range[6000], A376703Q] (* or *)
    dlist3[d_] := Sort[Times @@@ DeleteDuplicates[Map[Sort, Tuples[Prime[Range[PrimePi[10^(d-1)] + 1, PrimePi[10^d]]], 3]]]]; (* Generates terms with d-digits prime factors -- faster but memory intensive *)
    Flatten[Array[dlist3, 2]]
  • Python
    from sympy import factorint
    def ok(n):
        f = factorint(n)
        return sum(f.values()) == 3 and len(set([len(str(p)) for p in f])) == 1
    print([k for k in range(5100) if ok(k)]) # Michael S. Branicky, Oct 05 2024
    
  • Python
    from math import prod
    from sympy import primerange
    from itertools import count, combinations_with_replacement as cwr, islice
    def bgen(d): # generator of terms that are products of d-digit primes
        primes, out = list(primerange(10**(d-1), 10**d)), set()
        for t in cwr(primes, 3): out.add(prod(t))
        yield from sorted(out)
    def agen(): # generator of terms
        for d in count(1): yield from bgen(d)
    print(list(islice(agen(), 50))) # Michael S. Branicky, Oct 05 2024

A083128 Least 3-brilliant number of size n.

Original entry on oeis.org

8, 12, 105, 1331, 10013, 100181, 1030301, 10000127, 100000727, 1027243729, 10000002797, 100000000757, 1002101470343, 10000000000493, 100000000005643, 1000090002700027, 10000000000001251, 100000000000000649
Offset: 1

Views

Author

Robert G. Wilson v, May 11 2003

Keywords

Comments

Brilliant numbers, as defined by Peter Wallrodt, are numbers with two prime factors of the same length (in decimal notation). These numbers are generally used for cryptographic purposes and for testing the performance of prime factoring programs.
a(3n+1) will always be the cube of the least prime greater than 10^n.
2-brilliant numbers are A078972. 3-brilliant numbers addressed in A083128 and A083182. The sum of all 1, 2 and 3-digit 2-brilliant numbers is a 3-brilliant number. 37789 = 23 * 31 * 53 = 4 + 6 + 9 + 10 + 14 + 15 + 21 + 25 + 35 + 49 + 121 + 143 + 169 + 187 + 209 + 221 + 247 + 253 + 289 + 299 + 319 + 323 + 341 + 361 + 377 + 391 + 403 + 407 + 437 + 451 + 473 + 481 + 493 + 517 + 527 + 529 + 533 + 551 + 559 + 583 + 589 + 611 + 629 + 649 + 667 + 671 + 689 + 697 + 703 + 713 + 731 + 737 + 767 + 779 + 781 + 793 + 799 + 803 + 817 + 841 + 851 + 869 + 871 + 893 + 899 + 901 + 913 + 923 + 943 + 949 + 961 + 979 + 989 - Jonathan Vos Post, Jun 17 2007

Examples

			a(5) = 10013 = 17 * 19 * 31 and there is no lesser number of five digits which has three prime factors, not necessarily different, of the same size in decimal notation.
		

Crossrefs

A376706 a(n) = largest 4-brilliant number (A376704) with n decimal digits.

Original entry on oeis.org

90, 875, 2401, 99671, 999973, 9991291, 88529281, 999997283, 9999998329, 99999997711, 988053892081, 9999999999809, 99999999988979, 999999999991541, 9892436613211441, 99999999999805729, 999999999999968753, 9999999999999834493, 99964004859708406561, 999999999999999959833
Offset: 2

Views

Author

Paolo Xausa, Oct 02 2024

Keywords

Comments

See Alpern link for more terms, along with their prime factorization.

Examples

			a(6) = 999973 because 999973 = 13 * 13 * 61 * 97 is the largest 6-digit number with four prime factors having the same number of digits.
		

Crossrefs

Subsequence of A376704.
Showing 1-3 of 3 results.