cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A078972 Brilliant numbers: semiprimes (products of two primes, A001358) whose prime factors have the same number of decimal digits.

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 25, 35, 49, 121, 143, 169, 187, 209, 221, 247, 253, 289, 299, 319, 323, 341, 361, 377, 391, 403, 407, 437, 451, 473, 481, 493, 517, 527, 529, 533, 551, 559, 583, 589, 611, 629, 649, 667, 671, 689, 697, 703, 713, 731, 737, 767, 779, 781
Offset: 1

Views

Author

Jason Earls, Jan 12 2003

Keywords

Comments

"Brilliant numbers, as defined by Peter Wallrodt, are numbers with two prime factors of the same length (in decimal notation). These numbers are generally used for cryptographic purposes and for testing the performance of prime factoring programs." [Alpern]
Up to 10^8 the approximate sum of reciprocals is ~1.232884485... - Jason Earls, Oct 15 2010
Let f(n) = a(n) - floor(sqrt(a(n)))^2, or how much larger a(n) is than the largest square number <= a(n). Then f(n) is odd for all even squares, and even for all odd squares where n > 5. See "Ulam spiral" in links. - Christian N. K. Anderson, Jun 12 2013

Examples

			1711 = 29*59 is in the sequence since both of its factors have two digits.
		

References

  • P. D. James, The Private Patient, Knopf, NY, 2008, p. 192. (from N. J. A. Sloane, Aug 27 2009)

Crossrefs

Programs

  • Haskell
    import Data.Function (on)
    a078972 n = a078972_list !! (n-1)
    a078972_list = filter brilliant a001358_list where
       brilliant x = (on (==) a055642) p (x `div` p) where p = a020639 x
    -- Reinhard Zumkeller, Nov 10 2013, Mar 22 2014
    
  • Mathematica
    fQ[n_] := Block[{fi = FactorInteger@n}, Plus @@ Last /@ fi == 2 && Floor[ Log[10, fi[[1, 1]] ]] == Floor[ Log[10, fi[[ -1, 1]] ]]]; Select[ Range@792, fQ@# &] (* Robert G. Wilson v, May 26 2006 *)
    Select[Range[800],PrimeOmega[#]==2&&Length[Union[IntegerLength[FactorInteger[#][[;;,1]]]]]==1&] (* Harvey P. Dale, Jan 24 2025 *)
    Select[Range@1000, Differences@IntegerLength@Flatten@(ConstantArray@@#&/@FactorInteger[#]) == {0} &] (* Hans Rudolf Widmer, Oct 25 2022 *)
    dlist2[d_] := Union[Times @@@ Tuples[Prime[Range[PrimePi[10^(d-1)] + 1, PrimePi[10^d]]], 2]]; (* Generates terms with d-digits prime factors *)
    Flatten[Array[dlist2, 2]] (* Paolo Xausa, Oct 05 2024 *)
  • PARI
    is(n)=my(f=factor(n));(#f[,1]==1 && f[1,2]==2) || (#f[,1]==2 && f[1,2]==1 && f[2,2]==1 && #Str(f[1,1])==#Str(f[2,1])) \\ Charles R Greathouse IV, Jun 16 2011
    
  • Python
    from sympy import sieve
    A078972 = []
    for n in range(3):
        pr = list(sieve.primerange(10**n,10**(n+1)))
        for i,p in enumerate(pr):
            for q in pr[i:]:
                A078972.append(p*q)
    A078972 = sorted(A078972)
    # Chai Wah Wu, Aug 26 2014

Formula

a(n) = A239585(n) * A239586(n). - Reinhard Zumkeller, Mar 22 2014

Extensions

Edited by N. J. A. Sloane, Aug 27 2009

A376704 4-brilliant numbers: numbers which are the product of four primes having the same number of decimal digits.

Original entry on oeis.org

16, 24, 36, 40, 54, 56, 60, 81, 84, 90, 100, 126, 135, 140, 150, 189, 196, 210, 225, 250, 294, 315, 350, 375, 441, 490, 525, 625, 686, 735, 875, 1029, 1225, 1715, 2401, 14641, 17303, 20449, 22627, 24167, 25289, 26741, 28561, 29887, 30613, 31603, 34969, 35321, 36179
Offset: 1

Views

Author

Paolo Xausa, Oct 02 2024

Keywords

Examples

			35321 is a term because 35321 = 11 * 13 * 13 * 19, and these four prime factors have the same number of digits.
		

Crossrefs

Subsequence of A014613.

Programs

  • Mathematica
    A376704Q[k_] := With[{f = FactorInteger[k]}, Total[f[[All, 2]]] == 4 && Length[Union[IntegerLength[f[[All, 1]]]]] == 1];
    Select[Range[40000], A376704Q] (* or *)
    dlist4[d_] := Sort[Times @@@ DeleteDuplicates[Map[Sort, Tuples[Prime[Range[PrimePi[10^(d-1)] + 1, PrimePi[10^d]]], 4]]]]; (* Generates terms with d-digits prime factors -- faster but memory intensive *)
    Flatten[Array[dlist4, 2]]

A376705 a(n) = smallest 4-brilliant number (A376704) with n decimal digits.

Original entry on oeis.org

16, 100, 1029, 14641, 100529, 1000109, 10005647, 104060401, 1000002847, 10000000861, 100000024219, 1036488922561, 10000000051429, 100000000009729, 1000000000011799, 10028029413722401, 100000000000035241, 1000000000000012861, 10000000000000080101, 100012000540010800081
Offset: 2

Views

Author

Paolo Xausa, Oct 02 2024

Keywords

Comments

See Alpern link for more terms, along with their prime factorization.

Examples

			a(6) = 100529 because 100529 = 11 * 13 * 19 * 37 is the smallest 6-digit number with four prime factors having the same number of digits.
		

Crossrefs

Subsequence of A376704.

A376706 a(n) = largest 4-brilliant number (A376704) with n decimal digits.

Original entry on oeis.org

90, 875, 2401, 99671, 999973, 9991291, 88529281, 999997283, 9999998329, 99999997711, 988053892081, 9999999999809, 99999999988979, 999999999991541, 9892436613211441, 99999999999805729, 999999999999968753, 9999999999999834493, 99964004859708406561, 999999999999999959833
Offset: 2

Views

Author

Paolo Xausa, Oct 02 2024

Keywords

Comments

See Alpern link for more terms, along with their prime factorization.

Examples

			a(6) = 999973 because 999973 = 13 * 13 * 61 * 97 is the largest 6-digit number with four prime factors having the same number of digits.
		

Crossrefs

Subsequence of A376704.

A376738 Array read by ascending antidiagonals: T(n,k) is the k-th number which is the product of n (possibly non-distinct) primes having the same number of decimal digits.

Original entry on oeis.org

2, 4, 3, 8, 6, 5, 16, 12, 9, 7, 32, 24, 18, 10, 11, 64, 48, 36, 20, 14, 13, 128, 96, 72, 40, 27, 15, 17, 256, 192, 144, 80, 54, 28, 21, 19, 512, 384, 288, 160, 108, 56, 30, 25, 23, 1024, 768, 576, 320, 216, 112, 60, 42, 35, 29, 2048, 1536, 1152, 640, 432, 224, 120, 81, 45, 49, 31
Offset: 1

Views

Author

Paolo Xausa, Oct 03 2024

Keywords

Examples

			Array begins:
  n\k|    1     2     3     4     5     6     7      8      9     10  ...
  -----------------------------------------------------------------------
   1 |    2,    3,    5,    7,   11,   13,   17,    19,    23,    29, ... = A000040
   2 |    4,    6,    9,   10,   14,   15,   21,    25,    35,    49, ... = A078972
   3 |    8,   12,   18,   20,   27,   28,   30,    42,    45,    50, ... = A376703
   4 |   16,   24,   36,   40,   54,   56,   60,    81,    84,    90, ... = A376704
   5 |   32,   48,   72,   80,  108,  112,  120,   162,   168,   180, ...
   6 |   64,   96,  144,  160,  216,  224,  240,   324,   336,   360, ...
   7 |  128,  192,  288,  320,  432,  448,  480,   648,   672,   720, ...
   8 |  256,  384,  576,  640,  864,  896,  960,  1296,  1344,  1440, ...
   9 |  512,  768, 1152, 1280, 1728, 1792, 1920,  2592,  2688,  2880, ...
  10 | 1024, 1536, 2304, 2560, 3456, 3584, 3840,  5184,  5376,  5760, ...
  ...    |                                                          \______ A376739 (main diagonal)
      A000079 (from n = 1)
T(9,5) = 1728 because 1728 = 2 * 2 * 2 * 2 * 2 * 2 * 3 * 3 * 3 is the 5th number with nine prime factors all having the same number of digits.
		

Crossrefs

Programs

  • Mathematica
    Module[{dmax = 15, a, m, f}, a = Table[m = 2^n - 1; Table[While[Total[(f = FactorInteger[++m])[[All, 2]]] != n || Length[Union[IntegerLength[f[[All, 1]]]]] > 1]; m, dmax - n + 1], {n, dmax, 1, -1}]; Array[Diagonal[a, # - dmax] &, dmax]]

Formula

T(n,1) = 2^n.

A376800 3-brilliant numbers with distinct prime factors.

Original entry on oeis.org

30, 42, 70, 105, 2431, 2717, 3289, 3553, 4147, 4199, 4301, 4433, 4807, 5083, 5291, 5423, 5681, 5797, 5863, 6061, 6149, 6409, 6479, 6721, 6851, 6919, 7163, 7337, 7429, 7579, 7657, 7667, 7733, 7843, 8041, 8177, 8437, 8569, 8671, 8723, 8789, 8987, 9061, 9139, 9269
Offset: 1

Views

Author

Paul Duckett, Oct 04 2024

Keywords

Examples

			30 = 2*3*5 is a term.
2431 = 11*13*17 is a term.
		

Crossrefs

Intersection of A376703 and A007304.

Programs

  • Python
    from sympy import factorint
    def ok(n):
        f = factorint(n)
        return len(f) == sum(f.values()) == 3 and len(set([len(str(p)) for p in f])) == 1
    print([k for k in range(9300) if ok(k)]) # Michael S. Branicky, Oct 05 2024
    
  • Python
    from math import prod
    from sympy import primerange
    from itertools import count, combinations, islice
    def bgen(d): # generator of terms that are products of d-digit primes
        primes, out = list(primerange(10**(d-1), 10**d)), set()
        for t in combinations(primes, 3): out.add(prod(t))
        yield from sorted(out)
    def agen(): # generator of terms
        for d in count(1): yield from bgen(d)
    print(list(islice(agen(), 45))) # Michael S. Branicky, Oct 05 2024

Extensions

a(6) and beyond from Michael S. Branicky, Oct 05 2024
Showing 1-6 of 6 results.