cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A376703 3-brilliant numbers: numbers which are the product of three primes having the same number of decimal digits.

Original entry on oeis.org

8, 12, 18, 20, 27, 28, 30, 42, 45, 50, 63, 70, 75, 98, 105, 125, 147, 175, 245, 343, 1331, 1573, 1859, 2057, 2197, 2299, 2431, 2717, 2783, 2873, 3179, 3211, 3289, 3509, 3553, 3751, 3757, 3887, 3971, 4147, 4199, 4301, 4433, 4477, 4693, 4807, 4901, 4913, 4961, 5083
Offset: 1

Views

Author

Paolo Xausa, Oct 02 2024

Keywords

Examples

			4961 is a term because 4961 = 11 * 11 * 41, and these three prime factors have the same number of digits.
		

Crossrefs

Subsequence of A014612.

Programs

  • Mathematica
    A376703Q[k_] := With[{f = FactorInteger[k]}, Total[f[[All, 2]]] == 3 && Length[Union[IntegerLength[f[[All, 1]]]]] == 1];
    Select[Range[6000], A376703Q] (* or *)
    dlist3[d_] := Sort[Times @@@ DeleteDuplicates[Map[Sort, Tuples[Prime[Range[PrimePi[10^(d-1)] + 1, PrimePi[10^d]]], 3]]]]; (* Generates terms with d-digits prime factors -- faster but memory intensive *)
    Flatten[Array[dlist3, 2]]
  • Python
    from sympy import factorint
    def ok(n):
        f = factorint(n)
        return sum(f.values()) == 3 and len(set([len(str(p)) for p in f])) == 1
    print([k for k in range(5100) if ok(k)]) # Michael S. Branicky, Oct 05 2024
    
  • Python
    from math import prod
    from sympy import primerange
    from itertools import count, combinations_with_replacement as cwr, islice
    def bgen(d): # generator of terms that are products of d-digit primes
        primes, out = list(primerange(10**(d-1), 10**d)), set()
        for t in cwr(primes, 3): out.add(prod(t))
        yield from sorted(out)
    def agen(): # generator of terms
        for d in count(1): yield from bgen(d)
    print(list(islice(agen(), 50))) # Michael S. Branicky, Oct 05 2024

A083182 Greatest 3-brilliant number of size n.

Original entry on oeis.org

8, 98, 343, 9971, 99937, 912673, 9999707, 99999667, 991026973, 9999999467, 99999999007, 991921850317, 9999999994771, 99999999994117, 999730024299271, 9999999999997097, 99999999999992023, 999949000866995087
Offset: 1

Views

Author

Robert G. Wilson v, May 11 2003

Keywords

Comments

Brilliant numbers, as defined by Peter Wallrodt, are numbers with two prime factors of the same length (in decimal notation). These numbers are generally used for cryptographic purposes and for testing the performance of prime factoring programs.
a(3n) will always be the cube of the greatest prime less than 10^n.

Examples

			a(5) = 99937 = 37 * 37 * 73 and there is no greater number of five digits which has three prime factors, not necessarily different, of the same size in decimal notation.
		

Crossrefs

Cf. A083128.

A376705 a(n) = smallest 4-brilliant number (A376704) with n decimal digits.

Original entry on oeis.org

16, 100, 1029, 14641, 100529, 1000109, 10005647, 104060401, 1000002847, 10000000861, 100000024219, 1036488922561, 10000000051429, 100000000009729, 1000000000011799, 10028029413722401, 100000000000035241, 1000000000000012861, 10000000000000080101, 100012000540010800081
Offset: 2

Views

Author

Paolo Xausa, Oct 02 2024

Keywords

Comments

See Alpern link for more terms, along with their prime factorization.

Examples

			a(6) = 100529 because 100529 = 11 * 13 * 19 * 37 is the smallest 6-digit number with four prime factors having the same number of digits.
		

Crossrefs

Subsequence of A376704.

A347818 Smallest n-digit brilliant number.

Original entry on oeis.org

4, 10, 121, 1003, 10201, 100013, 1018081, 10000043, 100140049, 1000000081, 10000600009, 100000000147, 1000006000009, 10000000000073, 100000380000361, 1000000000000003, 10000001400000049, 100000000000000831, 1000000014000000049, 10000000000000000049, 100000000380000000361
Offset: 1

Views

Author

Eric Chen, Sep 15 2021

Keywords

Comments

A brilliant number is a semiprime (products of two primes, A001358) whose two prime factors have the same number of decimal digits. For an n-digit brilliant number, the two prime factors must each have ceiling(n/2) decimal digits.
Since all brilliant numbers are semiprimes, a(n) >= A098449(n), also, a(n) = A098449(n) for n = 1, 2, 4, 16, 78, ..., are there infinitely many n such that a(n) = A098449(n)?

Examples

			a(6) =    100013 =   103 * 971.
a(7) =   1018081 =  1009 * 1009.
a(8) =  10000043 =  2089 * 4787.
a(9) = 100140049 = 10007 * 10007.
		

Crossrefs

Programs

  • Mathematica
    Join[{4,10},Table[Module[{k=1},While[PrimeOmega[10^n+k]!=2||Length[ Union[ IntegerLength/@ FactorInteger[ 10^n+k][[;;,1]]]]!=1,k+=2];10^n+k],{n,2,20}]] (* Harvey P. Dale, Jan 09 2024 *)
  • PARI
    isA078972(n)=my(f=factor(n)); (#f[, 1]==1 && f[1, 2]==2) || (#f[, 1]==2 && f[1, 2]==1 && f[2, 2]==1 && #Str(f[1, 1])==#Str(f[2, 1]))
    A084476(n)=for(k=0,10^n,if(isA078972(10^(2*n-1)+k),return(k)))
    a(n)=if(n%2,nextprime(10^((n-1)/2))^2,10^(n-1)+A084476(n/2)) \\ after Charles R Greathouse IV in A078972

Formula

a(n) = 10^(n-1) + A083289(n).
a(2*n) = 10^(2*n-1) + A084476(n).
a(2*n+1) = A003617(n+1)^2.
a(n) >= A098449(n).
Showing 1-4 of 4 results.