A083206 a(n) is the number of ways of partitioning the divisors of n into two disjoint sets with equal sum.
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 17, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 3, 0, 0, 0, 14, 0, 0, 0, 1, 0, 13, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 2, 0, 1
Offset: 1
Keywords
Examples
a(24)=3: 1+2+3+4+8+12=6+24, 1+3+6+8+12=2+4+24, 4+6+8+12=1+2+3+24.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..101632 (terms 1..800 from Reinhard Zumkeller, terms 801..10000 from T. D. Noe).
- Reinhard Zumkeller, Illustration of initial terms
Crossrefs
Programs
-
Mathematica
a[n_] := (s = DivisorSigma[1, n]; If[Mod[s, 2] == 1, 0, f[n, s/2, 2]]); f[n_, m_, k_] := f[n, m, k] = If[k <= m, f[n, m, k+1] + f[n, m-k, k+1]*Boole[Mod[n, k] == 0], Boole[m == 0]]; Array[a, 105] (* Jean-François Alcover, Jul 29 2015, after Reinhard Zumkeller *)
-
PARI
A083206(n) = { my(s=sigma(n),p=1); if(s%2 || s < 2*n, 0, fordiv(n, d, p *= ('x^d + 'x^-d)); (polcoeff(p, 0)/2)); }; \\ Antti Karttunen, Dec 02 2024, after Ilya Gutkovskiy
Formula
a(n) = if sigma(n) mod 2 = 1 then 0 else f(n,sigma(n)/2,2), where sigma=A000203 and f(n,m,k) = if k<=m then f(n,m,k+1)+f(n,m-k,k+1)*0^(n mod k) else 0^m, cf. A033630, also using f. [Reinhard Zumkeller, Jul 10 2010]
a(n) is half the coefficient of x^0 in Product_{d|n} (x^d + 1/x^d). - Ilya Gutkovskiy, Feb 04 2024
Comments