A083211 Abundant numbers (A005101) with no subset of their divisors such that the complement has the same sum.
18, 36, 72, 100, 144, 162, 196, 200, 288, 324, 392, 400, 450, 576, 648, 738, 748, 774, 784, 800, 846, 882, 900, 954, 968, 1062, 1098, 1152, 1206, 1278, 1296, 1314, 1352, 1422, 1458, 1494, 1568, 1600, 1602, 1746, 1764, 1800, 1818, 1854, 1926, 1936, 1962, 2034, 2178, 2286, 2304, 2358, 2450, 2466, 2500, 2502, 2592, 2682, 2704, 2718, 2826, 2916, 2934, 3006, 3042
Offset: 1
Examples
Divisors of n=18: {1,2,3,6,9,18}; 18 is pseudo-perfect (A005835): 18=9+6+3, but there exist no two complementary subsets of divisors having the same sum, therefore 18 is a term.
Links
- David A. Corneth, Table of n, a(n) for n = 1..12915 (first 6061 terms from Antti Karttunen)
- Eric Weisstein's World of Mathematics, Abundant Number.
- Reinhard Zumkeller, Illustration of initial terms
Crossrefs
Programs
-
Mathematica
fQ[n_] := Block[{d = Divisors[n], t, ds, x}, ds = Total[d]; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; Select[Range[3042], And[DivisorSigma[1, #] > 2 #, ! fQ[#]] &] (* Michael De Vlieger, Dec 04 2024, after T. D. Noe at A083207 *)
-
PARI
A083206(n) = { my(s=sigma(n),p=1); if(s%2 || s < 2*n, 0, fordiv(n, d, p *= ('x^d + 'x^-d)); (polcoeff(p, 0)/2)); }; is_A083211(n) = ((sigma(n)>2*n) && (0==A083206(n))); \\ Antti Karttunen, Dec 04 2024
Formula
{k such that sigma(k) > 2*k and A083206(k) = 0}. - Antti Karttunen, Dec 04 2024
Extensions
a(21)-a(46) from Robert G. Wilson v, Apr 01 2010
Many missing terms inserted, first ones at a(29) = 1206 and a(30) = 1278 - Antti Karttunen, Dec 04 2024
Comments