A083214 Numbers k for which 3 | p(k), where p(k) = A000041(k) is the k-th partition number.
3, 7, 9, 10, 14, 16, 17, 20, 21, 22, 24, 26, 30, 32, 33, 35, 39, 40, 41, 43, 46, 48, 51, 52, 53, 57, 61, 63, 68, 70, 71, 75, 80, 88, 97, 102, 104, 106, 107, 111, 115, 124, 125, 129, 133, 138, 142, 147, 151, 160, 162, 163, 164, 169, 173, 178, 180, 181, 189, 191, 193
Offset: 1
Keywords
Examples
A000041(7)=15=0 mod 3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Range[250],Mod[PartitionsP[ # ],3]==0&] (* Zak Seidov, Apr 03 2007 *)
-
PARI
{ v=[1,1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,231,297,385,490,627,792,1002,1255,1575,1958,2436,3010,3718,4565,5604,6842,8349,10143,12310,14883,17977,21637,26015,31185,37338,44583,53174,63261,75175,89134]; for (i=2,length(v)-1,if (v[i]%3==0,print1(i-1","))) }
-
PARI
for(n=1,300,if(polcoeff(1/eta(x)+O(x^(n+1)),n)%3==0,print1(n,","))) \\ Benoit Cloitre, Oct 06 2005
-
PARI
is(n)=numbpart(n)%3==0 \\ Charles R Greathouse IV, Apr 08 2015
Formula
Conjecture : a(n) = 3n + o(n). - Benoit Cloitre, Oct 06 2005
Extensions
More terms from Benoit Cloitre, Oct 06 2005