cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A087183 Partition numbers of the form 3*k.

Original entry on oeis.org

3, 15, 30, 42, 135, 231, 297, 627, 792, 1002, 1575, 2436, 5604, 8349, 10143, 14883, 31185, 37338, 44583, 63261, 105558, 147273, 239943, 281589, 329931, 614154, 1121505, 1505499, 3087735, 4087968, 4697205, 8118264, 15796476, 44108109
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 23 2003

Keywords

Comments

The numbers m such that 3 divides A000041(m) are given in A083214. Klarreich writes: no one has proved whether there are infinitely many partition numbers divisible by 3, although it is known that there are infinitely many partition numbers divisible by 2. - Jonathan Vos Post, Jul 31 2008
Intersection of A008585 and A000041. - Reinhard Zumkeller, Nov 03 2009

References

  • Erica Klarreich, Pieces of numbers: a proof brings closure to a dramatic tale of partitions and primes, Science News, Jun 18 2005.

Crossrefs

Programs

Formula

A079978(a(n))*A167392(a(n)) = 1. - Reinhard Zumkeller, Nov 03 2009
a(n) = 3*A213365(n). - Omar E. Pol, May 08 2013
a(n) = A000041(A083214(n)). - Amiram Eldar, May 22 2025

A243935 Numbers m such that 5 divides A000041(m).

Original entry on oeis.org

4, 7, 9, 14, 18, 19, 23, 24, 27, 29, 34, 38, 39, 44, 49, 54, 58, 59, 61, 64, 66, 68, 69, 71, 74, 79, 82, 84, 89, 94, 97, 99, 103, 104, 109, 114, 119, 120, 124, 127, 128, 129, 130, 134, 136, 139, 140, 142, 144, 149, 154, 159, 163, 164, 165, 169, 170, 173, 174
Offset: 1

Views

Author

Bruno Berselli, Jun 15 2014

Keywords

Crossrefs

Numbers m such that k divides A000041(m), where k is prime: A001560 (k=2), A083214 (k=3), this sequence (k=5), A243936 (k=7), A027827 (k=11), A071750 (k=13). For k composite: A237278 (k=4), A035700 (k=12).

Programs

  • Magma
    [n: n in [1..200] | IsZero(NumberOfPartitions(n) mod 5)];
    
  • Mathematica
    Select[Range[200], Mod[PartitionsP[#], 5] == 0 &]
  • PARI
    is(n)=numbpart(n)%5==0 \\ Charles R Greathouse IV, Apr 08 2015
  • Sage
    # From Peter Luschny in A000041
    @CachedFunction
    def A000041(n):
        if n == 0: return 1
        S = 0; J = n-1; k = 2
        while 0 <= J:
            T = A000041(J)
            S = S+T if is_odd(k//2) else S-T
            J -= k if is_odd(k) else k//2
            k += 1
        return S
    [n for n in (0..200) if mod(A000041(n),5) == 0]
    

A237276 Numbers k such that A000041(k) == 1 (mod 3).

Original entry on oeis.org

0, 1, 5, 8, 18, 19, 23, 27, 28, 34, 36, 37, 44, 45, 50, 54, 55, 59, 62, 64, 72, 73, 77, 81, 82, 86, 89, 91, 95, 98, 99, 100, 110, 112, 113, 116, 117, 118, 119, 122, 128, 134, 137, 139, 140, 143, 146, 148, 149, 150, 152, 154, 155, 157, 158, 161, 166, 168, 170
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2014

Keywords

Comments

The set of positive integers is partitioned by A083214, A237276, and A237277.

Examples

			A000041(8) = 22 == 1 (mod 3).
		

Crossrefs

Programs

  • Mathematica
    f[n_, k_] := Select[Range[0, 250], Mod[PartitionsP[#], n] == k &]
    Table[f[3, k], {k, 0, 2}] (* A083214, A237276, A237277 *)
    Table[f[4, k], {k, 0, 3}] (* A237278-A237281 *)

Extensions

a(1)=0 inserted by Amiram Eldar, May 22 2025

A237277 Numbers k such that A000041(k) == 2 (mod 3).

Original entry on oeis.org

2, 4, 6, 11, 12, 13, 15, 25, 29, 31, 38, 42, 47, 49, 56, 58, 60, 65, 66, 67, 69, 74, 76, 78, 79, 83, 84, 85, 87, 90, 92, 93, 94, 96, 101, 103, 105, 108, 109, 114, 120, 121, 123, 126, 127, 130, 131, 132, 135, 136, 141, 144, 145, 153, 156, 159, 165, 167, 171
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2014

Keywords

Comments

The set of positive integers is partitioned by A083214, A237276, and A237277.

Examples

			A000041(6) = 11 == 2 (mod 3).
		

Crossrefs

Programs

  • Mathematica
    f[n_, k_] := Select[Range[250], Mod[PartitionsP[#], n] == k &]
    Table[f[3, k], {k, 0, 2}] (* A083214, A237276, A237277 *)
    Table[f[4, k], {k, 0, 3}] (* A237278-A237281 *)

A243936 Numbers m such that 7 divides A000041(m).

Original entry on oeis.org

5, 10, 11, 12, 16, 18, 19, 24, 26, 27, 33, 37, 39, 40, 41, 47, 48, 52, 53, 54, 55, 61, 68, 75, 76, 82, 83, 89, 96, 97, 103, 110, 111, 117, 124, 125, 131, 138, 140, 145, 147, 152, 159, 166, 170, 173, 177, 180, 187, 191, 194, 201, 208, 213, 215, 222, 225, 229, 232
Offset: 1

Views

Author

Bruno Berselli, Jun 15 2014

Keywords

Crossrefs

Numbers m such that k divides A000041(m), where k is prime: A001560 (k=2), A083214 (k=3), A243935 (k=5), this sequence (k=7), A027827 (k=11), A071750 (k=13). For k composite: A237278 (k=4), A035700 (k=12).

Programs

  • Magma
    [n: n in [1..250] | IsZero(NumberOfPartitions(n) mod 7)];
    
  • Mathematica
    Select[Range[250], Mod[PartitionsP[#], 7] == 0 &]
  • PARI
    is(n)=numbpart(n)%7==0 \\ Charles R Greathouse IV, Apr 08 2015
  • Sage
    # From Peter Luschny in A000041
    @CachedFunction
    def A000041(n):
        if n == 0: return 1
        S = 0; J = n-1; k = 2
        while 0 <= J:
            T = A000041(J)
            S = S+T if is_odd(k//2) else S-T
            J -= k if is_odd(k) else k//2
            k += 1
        return S
    [n for n in (0..250) if mod(A000041(n),7) == 0]
    

A127174 Numbers n of the form 3*k such that partition number of n is also of the form 3*k.

Original entry on oeis.org

3, 9, 21, 24, 30, 33, 39, 48, 51, 57, 63, 75, 102, 111, 129, 138, 147, 162, 180, 189, 195, 198, 207, 222, 225, 231, 240, 249, 267, 270, 288, 297, 330, 336, 339, 342, 348, 351, 354, 357, 363, 369, 372, 381, 396, 399, 402, 405, 411, 429, 432, 465, 468, 477, 480
Offset: 1

Views

Author

Zak Seidov, Apr 05 2007

Keywords

Comments

Subset of A083214. Or, intersection of A083214 and A008585.

Crossrefs

Programs

  • Maple
    with(combinat): a:=proc(k): if numbpart(3*k) mod 3 = 0 then 3*k else fi end: seq(a(n),n=1..200); # Emeric Deutsch, Apr 16 2007
  • Mathematica
    Select[Range[3,600,3],Mod[PartitionsP[ # ],3]==0&]
Showing 1-6 of 6 results.