A083264 Numbers k such that the difference d of the largest and smallest prime factors of k is a composite divisor of k.
198, 396, 510, 594, 792, 966, 990, 1020, 1188, 1386, 1530, 1566, 1584, 1782, 1932, 1980, 2040, 2178, 2376, 2550, 2590, 2772, 2898, 2970, 3060, 3132, 3168, 3198, 3564, 3570, 3864, 3960, 4080, 4158, 4230, 4356, 4590, 4698, 4752, 4830, 4950, 5100, 5180
Offset: 1
Examples
198 = 2*3*3*11 = 2*9*11 is in the sequence where d = 11 - 2 = 9 is composite.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
ffi[x_] := Flatten[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; lf[x_] := Length[FactorInteger[x]]; ma[x_] := Max[ba[x]]; mi[x_] := Min[ba[x]] Do[s=ma[ba[n]]-mi[ba[n]]; If[Mod[n, s]==0&&Greater[s, 2]&&!PrimeQ[s], Print[n]], {n, 1, 20000}] dllpfQ[n_]:=Module[{c=Transpose[FactorInteger[n]][[1]],d},d=Last[c]-First[ c];If[d==0,d=1];Divisible[n,d]&&d>2&&CompositeQ[d]]; Select[ Range[ 6000],dllpfQ] (* Harvey P. Dale, Sep 26 2014 *)
-
PARI
isok(n) = if (n>1, my(f=factor(n)[,1], d = vecmax(f) - vecmin(f)); (d > 1) && !isprime(d) && !(n % d)); \\ Michel Marcus, Jul 09 2018
Extensions
Name, Formula, and Example simplified by Jon E. Schoenfield, Jul 14 2018
Comments