cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A079449 Primes p such that there is at least one integer x satisfying p = x*tau(x)+1 where tau(x) = A000005(x), the number of divisors of x.

Original entry on oeis.org

2, 5, 7, 11, 13, 23, 41, 47, 59, 61, 73, 83, 89, 107, 109, 137, 157, 167, 179, 193, 227, 229, 233, 241, 263, 271, 277, 313, 337, 347, 349, 359, 373, 379, 383, 409, 433, 449, 457, 461, 467, 479, 503, 563, 569, 587, 709, 719, 733, 809, 821, 839, 853, 857, 863
Offset: 1

Views

Author

Benoit Cloitre, Jan 13 2003

Keywords

Examples

			12*tau(12) = 72 hence 73 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    seq[lim_] := Union[Select[Table[k * DivisorSigma[0, k] + 1, {k, 1, Floor[lim/2]}], # <= lim && PrimeQ[#] &]]; seq[1000] (* Amiram Eldar, Apr 19 2025 *)
  • PARI
    lista(nn) = {forprime(p=2, nn, for (n=1, p, if (n*numdiv(n)+1 == p, print1(p, ", "); break;);););} \\ Michel Marcus, Dec 01 2013

A083272 a(n) = n*tau(a(n-1)) + 1 = n*A000005(a(n-1)) + 1, a(0) = 1.

Original entry on oeis.org

1, 2, 5, 7, 9, 16, 31, 15, 33, 37, 21, 45, 73, 27, 57, 61, 33, 69, 73, 39, 81, 106, 89, 47, 49, 76, 157, 55, 113, 59, 61, 63, 193, 67, 69, 141, 145, 149, 77, 157, 81, 206, 169, 130, 353, 91, 185, 189, 385, 393, 201, 205, 209, 213, 217, 221, 225, 514, 233, 119, 241, 123, 249
Offset: 0

Views

Author

Labos Elemer, May 14 2003

Keywords

Crossrefs

Programs

  • Mathematica
    h[x_] := x*DivisorSigma[0, h[x-1]]+1; h[0] = 1; Table[h[w], {w, 0, 100}]
    nxt[{n_,a_}]:={n+1, (n+1)DivisorSigma[0,a]+1}; NestList[nxt,{0,1},70][[All,2]] (* Harvey P. Dale, Feb 06 2020 *)

A210495 Numbers n such that d(n)*n + 1 is prime, d(n) = number of divisors of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 10, 11, 12, 15, 18, 22, 23, 24, 27, 29, 30, 32, 34, 39, 41, 42, 45, 52, 53, 54, 56, 57, 58, 63, 64, 68, 69, 76, 83, 84, 87, 89, 93, 96, 108, 110, 113, 115, 131, 142, 144, 147, 150, 152, 153, 156, 162, 165, 168, 170, 172, 173, 175, 177
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 24 2013

Keywords

Comments

This is the union of Sophie Germain primes and Sophie Germain nonprimes, so it might be called "Sophie Germain numbers".

Crossrefs

Programs

  • Maple
    A210495 := proc(n)
        option remember;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isprime(numtheory[tau](a)*a+1) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Jan 27 2013
  • Mathematica
    Select[Range[200],PrimeQ[# DivisorSigma[0,#]+1]&] (* Harvey P. Dale, Aug 26 2013 *)
  • PARI
    is(n)=isprime(numdiv(n)*n+1) \\ Charles R Greathouse IV, Jan 24 2013
Showing 1-3 of 3 results.