A083299
a(n) = (4*6^n + (-4)^n)/5.
Original entry on oeis.org
1, 4, 32, 160, 1088, 6016, 38144, 220672, 1356800, 8009728, 48582656, 289398784, 1744781312, 10435133440, 62745018368, 375933239296, 2257746919424, 13537891581952, 81261709230080, 487432816427008, 2925146654375936
Offset: 0
A083301
a(n) = (4*8^n + (-2)^n)/5.
Original entry on oeis.org
1, 6, 52, 408, 3280, 26208, 209728, 1677696, 13421824, 107374080, 858993664, 6871947264, 54975582208, 439804649472, 3518437212160, 28147497664512, 225179981381632, 1801439850921984, 14411518807638016, 115292150460579840
Offset: 0
-
[(4*8^n+(-2)^n)/5: n in [0..25]]; // Vincenzo Librandi, Jun 29 2011
-
Table[(4 * 8^n + (-2)^n)/5, {n, 0, 19}] (* Alonso del Arte, Mar 29 2011 *)
-
a(n)=4^(n+1)\/5<Charles R Greathouse IV, Jun 29 2011
-
[lucas_number1(n,6,-16) for n in range(1, 21)] # Zerinvary Lajos, Apr 24 2009
A201865
Expansion of 1/((1-3*x)*(1+7*x)).
Original entry on oeis.org
1, -4, 37, -232, 1705, -11692, 82573, -575824, 4037329, -28241620, 197750389, -1384075576, 9689060473, -67821828988, 474757585885, -3323288752288, 23263064312737, -162841321048996, 1139889634763461, -7979226281082760, 55854587454363721, -390982101720192844
Offset: 0
-
m:=22; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-3*x)*(1+7*x))));
-
CoefficientList[Series[1/((1-3*x)*(1+7*x)), {x, 0, 22}], x]
-
makelist(coeff(taylor(1/((1-3*x)*(1+7*x)), x, 0, n), x, n), n, 0, 21);
-
Vec(1/((1-3*x)*(1+7*x))+O(x^22))
Showing 1-3 of 3 results.
Comments