A083341 Smaller factor of the n-th semiprime of the form (m!)^2 + 1.
13, 101, 17, 101, 1344169, 149, 9049, 37, 710341, 2122590346576634509, 171707860473207588349837, 7686544942807799800864250520468090636146175134909, 2196283505473, 598350346949, 1211221552894876996541369232623365900407018851538797
Offset: 1
Examples
a(1) = 13 because (A083340(1)!)^2 + 1 = 518401 = 13*39877. a(15) = 1211221552894876996541369232623365900407018851538797 because (A083340(15)!)^2 + 1 = (55!)^2 + 1 can be factored into P52*P96 with a(15) = P52.
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..17
- Andrew Walker, Table of factors of (n!)^2+1.
Programs
-
PARI
for(n=1,29,my(f=(n!)^2+1);if(bigomega(f)==2,print1(vecmin(factor(f)[,1]),", "))) \\ Hugo Pfoertner, Jul 13 2019
Formula
Numbers p such that p*q = (A083340(n)!)^2 + 1, p, q prime, p < q.
Extensions
The 11th term of the sequence (49-digit factor of the 100-digit number (41!)^2+1) was found with Yuji Kida's multiple polynomial quadratic sieve UBASIC PPMPQS v3.5 in 13 days CPU time on an Intel PIII 550 MHz.
Missing a(4) and new a(14), a(15) added by Hugo Pfoertner, Jul 13 2019