cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A282706 Smallest prime factor of A020549(n) = (n!)^2 + 1.

Original entry on oeis.org

2, 2, 5, 37, 577, 14401, 13, 101, 17, 131681894401, 13168189440001, 1593350922240001, 101, 38775788043632640001, 29, 1344169, 149, 9049, 37, 710341, 41, 61, 337, 509, 384956219213331276939737002152967117209600000001, 941
Offset: 0

Views

Author

N. J. A. Sloane, Feb 26 2017

Keywords

Comments

By construction, for n >= 2, a(n) == 1 (mod 4) and a(n) > n.
From Robert Israel, Mar 08 2017: (Start)
a(n) = A020549(n) for n in A046029.
a(n) <= 2*n+1 if n is in A104636.
The first member of A104636 for which a(n) < 2*n+1 is 48.
a(a(n)-n-1) = a(n). (End)

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 147.

Crossrefs

Programs

  • Magma
    [2] cat [Min(PrimeFactors(Factorial(n)^2 + 1)):n in[1..25]]; // Vincenzo Librandi, Feb 28 2017
  • Maple
    f:= proc(n) local a;
      a:= min(map(proc(t) if t[1]::integer then t[1] fi end proc, ifactors((n!)^2+1,easy)[2]));
    if a = infinity then
       a:= traperror(timelimit(60, min(map(t -> t[1], ifactors((n!)^2+1)[2]))));
    fi;
      a
    end proc:
    map(f, [$0..36]); # Robert Israel, Mar 08 2017
  • Mathematica
    Join[{2}, Array[FactorInteger[(#!)^2 + 1][[1, 1]]&, {25}]] (* Vincenzo Librandi, Feb 28 2017 *)

Extensions

More terms from Vincenzo Librandi, Feb 28 2017

A083340 Numbers n such that A020549(n)=(n!)^2+1 is a semiprime.

Original entry on oeis.org

6, 7, 8, 12, 15, 16, 17, 18, 19, 28, 29, 41, 45, 53, 55, 61, 73
Offset: 1

Views

Author

Hugo Pfoertner, Apr 24 2003

Keywords

Comments

The smaller of the two prime factors is given in A083341. The next candidates for a continuation are 55 and 61. (55!)^2 + 1 is composite with 147 decimal digits and unknown factorization.
(55!)^2 + 1 has been factored using ECM into P52*P96 with P52 = A083341(15). (61!)^2 + 1 is composite with 168 decimal digits. - Hugo Pfoertner, Jul 13 2019
Using CADO-NFS, (61!)^2 + 1 has been factored into P58*P110 with P58 = A282706(61) in 17 days wall clock time using 56 million CPU seconds. a(18) >= 75. - Hugo Pfoertner, Aug 04 2019

Examples

			a(1)=6 because (6!)^2+1=518401=13*39877 is a semiprime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[60],PrimeOmega[(#!)^2+1]==2&] (* Harvey P. Dale, Dec 12 2018 *)

Extensions

a(15) from Hugo Pfoertner, Jul 13 2019
a(16), a(17) from Hugo Pfoertner, Aug 04 2019
Showing 1-2 of 2 results.