cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A020549 a(n) = (n!)^2 + 1.

Original entry on oeis.org

2, 2, 5, 37, 577, 14401, 518401, 25401601, 1625702401, 131681894401, 13168189440001, 1593350922240001, 229442532802560001, 38775788043632640001, 7600054456551997440001, 1710012252724199424000001, 437763136697395052544000001
Offset: 0

Views

Author

Keywords

Comments

Used to prove there are infinitely many primes of the form 4k+1 (see A282706). - N. J. A. Sloane, Feb 26 2017

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 147.
  • F. Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sciences, Vol. 16E, No. 2 (1997), pp. 237-240.
  • H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.
  • M. Le, On the Interesting Smarandache Product Sequences, Smarandache Notions Journal, Vol. 9, No. 1-2, 1998, 133-134.
  • M. Le, The Primes in Smarandache Power Product Sequences, Smarandache Notions Journal, Vol. 9, No. 1-2, 1998, 96-97.

Crossrefs

Cf. A001044.
For smallest prime factor see A282706.

Programs

A083341 Smaller factor of the n-th semiprime of the form (m!)^2 + 1.

Original entry on oeis.org

13, 101, 17, 101, 1344169, 149, 9049, 37, 710341, 2122590346576634509, 171707860473207588349837, 7686544942807799800864250520468090636146175134909, 2196283505473, 598350346949, 1211221552894876996541369232623365900407018851538797
Offset: 1

Views

Author

Hugo Pfoertner, Apr 25 2003

Keywords

Examples

			a(1) = 13 because (A083340(1)!)^2 + 1 = 518401 = 13*39877.
a(15) = 1211221552894876996541369232623365900407018851538797 because (A083340(15)!)^2 + 1 = (55!)^2 + 1 can be factored into P52*P96 with a(15) = P52.
		

Crossrefs

Cf. A020549, A083340, subsequence of A282706.

Programs

  • PARI
    for(n=1,29,my(f=(n!)^2+1);if(bigomega(f)==2,print1(vecmin(factor(f)[,1]),", "))) \\ Hugo Pfoertner, Jul 13 2019

Formula

Numbers p such that p*q = (A083340(n)!)^2 + 1, p, q prime, p < q.

Extensions

The 11th term of the sequence (49-digit factor of the 100-digit number (41!)^2+1) was found with Yuji Kida's multiple polynomial quadratic sieve UBASIC PPMPQS v3.5 in 13 days CPU time on an Intel PIII 550 MHz.
Missing a(4) and new a(14), a(15) added by Hugo Pfoertner, Jul 13 2019

A282705 Smallest prime factor of A282704.

Original entry on oeis.org

3, 11, 59, 419, 31, 19, 1021019, 19399379, 41, 229, 173, 14841476269619, 919, 21519583, 53, 461, 151, 101, 281, 1115881660253397921934830779, 158616683341, 6435289534681345815798169108259, 271, 300423271
Offset: 1

Views

Author

N. J. A. Sloane, Feb 26 2017

Keywords

Comments

By construction, a(n) == 3 (mod 4) and a(n) > prime(n).
a(98) requires the factorization of a 215-digit composite; a(99)-a(115) = 7879, 4421, 1949, 549767, 673759959337, 20051, 29383, 661, 37712121832769, 1481189, 14344471, 7136807, 991, 62539, 2879, 205598683, 10234232245987. - Hans Havermann, Mar 24 2017

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 147.

Crossrefs

Extensions

Corrected and extended by Hans Havermann, Mar 12 2017

A083340 Numbers n such that A020549(n)=(n!)^2+1 is a semiprime.

Original entry on oeis.org

6, 7, 8, 12, 15, 16, 17, 18, 19, 28, 29, 41, 45, 53, 55, 61, 73
Offset: 1

Views

Author

Hugo Pfoertner, Apr 24 2003

Keywords

Comments

The smaller of the two prime factors is given in A083341. The next candidates for a continuation are 55 and 61. (55!)^2 + 1 is composite with 147 decimal digits and unknown factorization.
(55!)^2 + 1 has been factored using ECM into P52*P96 with P52 = A083341(15). (61!)^2 + 1 is composite with 168 decimal digits. - Hugo Pfoertner, Jul 13 2019
Using CADO-NFS, (61!)^2 + 1 has been factored into P58*P110 with P58 = A282706(61) in 17 days wall clock time using 56 million CPU seconds. a(18) >= 75. - Hugo Pfoertner, Aug 04 2019

Examples

			a(1)=6 because (6!)^2+1=518401=13*39877 is a semiprime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[60],PrimeOmega[(#!)^2+1]==2&] (* Harvey P. Dale, Dec 12 2018 *)

Extensions

a(15) from Hugo Pfoertner, Jul 13 2019
a(16), a(17) from Hugo Pfoertner, Aug 04 2019

A301346 Largest prime factor of A020549(n) = (n!)^2 + 1.

Original entry on oeis.org

2, 2, 5, 37, 577, 14401, 39877, 251501, 95629553, 131681894401, 13168189440001, 1593350922240001, 2271708245569901, 38775788043632640001, 2404319663572286441, 1272170577304043929, 2938007628841577533852349, 13980942259426143240713449, 1107848353183710355135404972973, 20831587158104092560535861261
Offset: 0

Views

Author

Seiichi Manyama, Mar 19 2018

Keywords

Comments

a(n) = A020549(n) for n in A046029.

Crossrefs

Programs

  • Maple
    a:= n-> max(numtheory[factorset](n!^2+1)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 19 2018
  • PARI
    a(n) = vecmax(factor(n!^2 + 1)[,1]); \\ Daniel Suteu, Jun 10 2022

Formula

a(n) = A006530(A020549(n)). - Altug Alkan, Mar 19 2018
Showing 1-5 of 5 results.