cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A282706 Smallest prime factor of A020549(n) = (n!)^2 + 1.

Original entry on oeis.org

2, 2, 5, 37, 577, 14401, 13, 101, 17, 131681894401, 13168189440001, 1593350922240001, 101, 38775788043632640001, 29, 1344169, 149, 9049, 37, 710341, 41, 61, 337, 509, 384956219213331276939737002152967117209600000001, 941
Offset: 0

Views

Author

N. J. A. Sloane, Feb 26 2017

Keywords

Comments

By construction, for n >= 2, a(n) == 1 (mod 4) and a(n) > n.
From Robert Israel, Mar 08 2017: (Start)
a(n) = A020549(n) for n in A046029.
a(n) <= 2*n+1 if n is in A104636.
The first member of A104636 for which a(n) < 2*n+1 is 48.
a(a(n)-n-1) = a(n). (End)

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 147.

Crossrefs

Programs

  • Magma
    [2] cat [Min(PrimeFactors(Factorial(n)^2 + 1)):n in[1..25]]; // Vincenzo Librandi, Feb 28 2017
  • Maple
    f:= proc(n) local a;
      a:= min(map(proc(t) if t[1]::integer then t[1] fi end proc, ifactors((n!)^2+1,easy)[2]));
    if a = infinity then
       a:= traperror(timelimit(60, min(map(t -> t[1], ifactors((n!)^2+1)[2]))));
    fi;
      a
    end proc:
    map(f, [$0..36]); # Robert Israel, Mar 08 2017
  • Mathematica
    Join[{2}, Array[FactorInteger[(#!)^2 + 1][[1, 1]]&, {25}]] (* Vincenzo Librandi, Feb 28 2017 *)

Extensions

More terms from Vincenzo Librandi, Feb 28 2017

A083341 Smaller factor of the n-th semiprime of the form (m!)^2 + 1.

Original entry on oeis.org

13, 101, 17, 101, 1344169, 149, 9049, 37, 710341, 2122590346576634509, 171707860473207588349837, 7686544942807799800864250520468090636146175134909, 2196283505473, 598350346949, 1211221552894876996541369232623365900407018851538797
Offset: 1

Views

Author

Hugo Pfoertner, Apr 25 2003

Keywords

Examples

			a(1) = 13 because (A083340(1)!)^2 + 1 = 518401 = 13*39877.
a(15) = 1211221552894876996541369232623365900407018851538797 because (A083340(15)!)^2 + 1 = (55!)^2 + 1 can be factored into P52*P96 with a(15) = P52.
		

Crossrefs

Cf. A020549, A083340, subsequence of A282706.

Programs

  • PARI
    for(n=1,29,my(f=(n!)^2+1);if(bigomega(f)==2,print1(vecmin(factor(f)[,1]),", "))) \\ Hugo Pfoertner, Jul 13 2019

Formula

Numbers p such that p*q = (A083340(n)!)^2 + 1, p, q prime, p < q.

Extensions

The 11th term of the sequence (49-digit factor of the 100-digit number (41!)^2+1) was found with Yuji Kida's multiple polynomial quadratic sieve UBASIC PPMPQS v3.5 in 13 days CPU time on an Intel PIII 550 MHz.
Missing a(4) and new a(14), a(15) added by Hugo Pfoertner, Jul 13 2019
Showing 1-2 of 2 results.