A083345 Numerator of r(n) = Sum(e/p: n=Product(p^e)); a(n) = n' / gcd(n,n'), where n' is the arithmetic derivative of n.
0, 1, 1, 1, 1, 5, 1, 3, 2, 7, 1, 4, 1, 9, 8, 2, 1, 7, 1, 6, 10, 13, 1, 11, 2, 15, 1, 8, 1, 31, 1, 5, 14, 19, 12, 5, 1, 21, 16, 17, 1, 41, 1, 12, 13, 25, 1, 7, 2, 9, 20, 14, 1, 3, 16, 23, 22, 31, 1, 23, 1, 33, 17, 3, 18, 61, 1, 18, 26, 59, 1, 13, 1, 39, 11, 20, 18, 71, 1, 11, 4, 43, 1, 31, 22
Offset: 1
Examples
Fractions begin with 0, 1/2, 1/3, 1, 1/5, 5/6, 1/7, 3/2, 2/3, 7/10, 1/11, 4/3, ... For n = 12, 2*2*3 = 2^2 * 3^1 --> r(12) = 2/2 + 1/3 = (6+2)/6, therefore a(12) = 4, A083346(12) = 3. For n = 18, 2*3*3 = 2^1 * 3^2 --> r(18) = 1/2 + 2/3 = (3+4)/6, therefore a(18) = 7, A083346(18) = 6.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Cf. A083346 (denominator), A000027, A072873, A083347, A083348, A085731, A086130, A136141, A342001, A342002 [= a(A276086(n))].
Programs
-
Mathematica
Array[Numerator@ Total[FactorInteger[#] /. {p_, e_} /; e > 0 :> e/p] - Boole[# == 1] &, 85] (* Michael De Vlieger, Feb 25 2018 *)
-
PARI
A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~,i,f[i,2]/f[i,1]))); }; \\ Antti Karttunen, Feb 25 2018
Formula
The fraction a(n)/A083346(n) is totally additive with a(p) = 1/p. - Franklin T. Adams-Watters, May 17 2006
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A083346(k) = Sum_{p prime} 1/(p*(p-1)) = 0.773156... (A136141). - Amiram Eldar, Sep 29 2023
Extensions
Secondary definition added by Antti Karttunen, Nov 12 2024
Comments