cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083364 Antidiagonal sums of table A083362.

Original entry on oeis.org

1, 5, 17, 32, 71, 105, 187, 248, 389, 485, 701, 840, 1147, 1337, 1751, 2000, 2537, 2853, 3529, 3920, 4751, 5225, 6227, 6792, 7981, 8645, 10037, 10808, 12419, 13305, 15151, 16160, 18257, 19397, 21761, 23040, 25687, 27113, 30059, 31640, 34901, 36645
Offset: 0

Views

Author

Paul D. Hanna, Apr 27 2003

Keywords

Comments

A083362 is the square table of least distinct positive integers such that the sum of any two consecutive terms in any row form a square.

Crossrefs

Programs

  • Magma
    [(4*n^3+12*n^2+18*n+9+(2*n^2+2*n-1)*(-1)^n)/8 : n in [0..40]]; // Wesley Ivan Hurt, Sep 26 2014
  • Maple
    A083364:=n->(4*n^3+12*n^2+18*n+9+(2*n^2+2*n-1)*(-1)^n)/8: seq(A083364(n), n=0..40); # Wesley Ivan Hurt, Sep 26 2014
  • Mathematica
    Table[(4 n^3 + 12 n^2 + 18 n + 9 + (2 n^2 + 2 n - 1) (-1)^n)/8, {n,0,50}] (* Wesley Ivan Hurt, Sep 26 2014 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,5,17,32,71,105,187},50] (* Harvey P. Dale, Aug 16 2021 *)
  • PARI
    Vec((x^5+6*x^4+3*x^3+9*x^2+4*x+1)/((x-1)^4*(x+1)^3) + O(x^100)) \\ Colin Barker, Sep 26 2014
    

Formula

a(2n) = n(n+1)(4n+3)+(2n+1), a(2n+1) = ((n+1)^2)(4n+3)+(2n+2), for n>=0. - Paul D. Hanna, Apr 30 2003
a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7). - Colin Barker, Sep 26 2014
G.f.: (x^5+6*x^4+3*x^3+9*x^2+4*x+1) / ((x-1)^4*(x+1)^3). - Colin Barker, Sep 26 2014
a(n) = (4*n^3+12*n^2+18*n+9+(2*n^2+2*n-1)*(-1)^n)/8. - Wesley Ivan Hurt, Sep 26 2014