A083364 Antidiagonal sums of table A083362.
1, 5, 17, 32, 71, 105, 187, 248, 389, 485, 701, 840, 1147, 1337, 1751, 2000, 2537, 2853, 3529, 3920, 4751, 5225, 6227, 6792, 7981, 8645, 10037, 10808, 12419, 13305, 15151, 16160, 18257, 19397, 21761, 23040, 25687, 27113, 30059, 31640, 34901, 36645
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).
Programs
-
Magma
[(4*n^3+12*n^2+18*n+9+(2*n^2+2*n-1)*(-1)^n)/8 : n in [0..40]]; // Wesley Ivan Hurt, Sep 26 2014
-
Maple
A083364:=n->(4*n^3+12*n^2+18*n+9+(2*n^2+2*n-1)*(-1)^n)/8: seq(A083364(n), n=0..40); # Wesley Ivan Hurt, Sep 26 2014
-
Mathematica
Table[(4 n^3 + 12 n^2 + 18 n + 9 + (2 n^2 + 2 n - 1) (-1)^n)/8, {n,0,50}] (* Wesley Ivan Hurt, Sep 26 2014 *) LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,5,17,32,71,105,187},50] (* Harvey P. Dale, Aug 16 2021 *)
-
PARI
Vec((x^5+6*x^4+3*x^3+9*x^2+4*x+1)/((x-1)^4*(x+1)^3) + O(x^100)) \\ Colin Barker, Sep 26 2014
Formula
a(2n) = n(n+1)(4n+3)+(2n+1), a(2n+1) = ((n+1)^2)(4n+3)+(2n+2), for n>=0. - Paul D. Hanna, Apr 30 2003
a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7). - Colin Barker, Sep 26 2014
G.f.: (x^5+6*x^4+3*x^3+9*x^2+4*x+1) / ((x-1)^4*(x+1)^3). - Colin Barker, Sep 26 2014
a(n) = (4*n^3+12*n^2+18*n+9+(2*n^2+2*n-1)*(-1)^n)/8. - Wesley Ivan Hurt, Sep 26 2014
Comments