cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083367 Numbers k that are equal to the sum of its divisors after the digits of each divisor have been sorted in ascending order.

Original entry on oeis.org

1, 60, 1959, 149587, 277947, 1449933, 2222863, 2396214, 24918486, 25354845, 48878262, 1673533845, 24753647943
Offset: 1

Views

Author

Jason Earls, Jun 11 2003

Keywords

Comments

No more terms through 10^8. - Ryan Propper, Sep 09 2005
a(13) > 10^10. - Donovan Johnson, Aug 28 2013
a(14) > 10^11. - Giovanni Resta, Aug 30 2013

Examples

			a(3) = 1959 because the divisors of 1959 are [1, 3, 653, 1959] and 1+3+356+1599 = 1959.
		

Crossrefs

Cf. A004185.

Programs

  • Mathematica
    Do[l = IntegerDigits /@ Divisors[n]; l = Map[Sort[ # ]&, l]; k = Plus @@ Map[FromDigits[ # ]&, l]; If[k == n, Print[n]], {n, 1, 10^8}] (* Ryan Propper, Sep 09 2005 *)
    Select[Range[24*10^5],Total[FromDigits[Sort[IntegerDigits[#]]]&/@Divisors[#]] == #&] (* The program generates the first 8 terms of the sequence. *) (* Harvey P. Dale, Dec 28 2022 *)
  • PARI
    is(n) = sumdiv(n,d,fromdigits(vecsort(digits(d))))==n \\ David A. Corneth, Dec 28 2022
    
  • Python
    from sympy import divisors
    def sa(n): return int("".join(sorted(str(n))))
    def ok(n): return n == sum(sa(d) for d in divisors(n, generator=True))
    print([k for k in range(1, 3*10**5) if ok(k)]) # Michael S. Branicky, Dec 28 2022

Extensions

More terms from Ryan Propper, Sep 09 2005
a(12) from Donovan Johnson, Aug 28 2013
a(13) from Giovanni Resta, Aug 30 2013