A083382 Write the numbers from 1 to n^2 consecutively in n rows of length n; a(n) = minimal number of primes in a row.
0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 4, 4, 3, 3, 4, 5, 4, 3, 4, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 6, 4, 5, 6, 6, 5, 6, 6, 6, 6, 6, 7, 7, 6, 6, 6, 7, 7, 7, 7, 6, 6, 7, 7, 7
Offset: 1
Examples
For n = 3 the array is 1 2 3 (2 primes) 4 5 6 (1 prime) 7 8 9 (1 prime) so a(3) = 1
References
- P. Ribenboim, The New Book of Prime Number Records, Chapter 6.
- P. Ribenboim, The Little Book Of Big Primes, Springer-Verlag, NY 1991, page 185.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Carlos Rivera, The calendar-like square conjecture
- A. Schinzel and W. Sierpinski, Sur certaines hypothèses concernant les nombres premiers, Acta Arithmetica 4 (1958), 185-208; erratum 5 (1958) p. 259.
Crossrefs
Programs
-
Haskell
a083382 n = f n n a010051_list where f m 0 _ = m f m k chips = f (min m $ sum chin) (k - 1) chips' where (chin,chips') = splitAt n chips -- Reinhard Zumkeller, Jun 10 2012
-
Maple
A083382 := proc(n) local t1,t2,at; t1 := n; at := 0; for i from 1 to n do t2 := 0; for j from 1 to n do at := at+1; if isprime(at) then t2 := t2+1; fi; od; if t2 < t1 then t1 := t2; fi; od; t1; end;
-
Mathematica
Table[minP=n; Do[s=0; Do[If[PrimeQ[c+(r-1)*n], s++ ], {c, n}]; minP=Min[s, minP], {r, n}]; minP, {n, 100}] Table[Min[Count[#,?PrimeQ]&/@Partition[Range[n^2],n]],{n,110}] (* _Harvey P. Dale, May 29 2013 *)
-
PARI
A083382(n) = { my(m=-1); for(i=0,n-1,my(s=sum(j=(i*n),((i+1)*n)-1,isprime(1+j))); if((m<0) || (s < m), m = s)); (m); }; \\ Antti Karttunen, Jan 01 2019
Extensions
Edited by Charles R Greathouse IV, Jul 07 2010
Comments