cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A346214 Triangular array read by rows. T(n,k) is the number of nilpotent n X n matrices over GF(2) with index k, 1 <= k <= n, n >= 1.

Original entry on oeis.org

1, 1, 3, 1, 21, 42, 1, 315, 1260, 2520, 1, 6975, 104160, 312480, 624960, 1, 373023, 23436000, 104993280, 314979840, 629959680, 1, 32252031, 9175162752, 121912197120, 426692689920, 1280078069760, 2560156139520, 1, 6619979775, 9978120069120, 421755245936640, 1989607056998400, 6963624699494400, 20890874098483200, 41781748196966400
Offset: 1

Views

Author

Geoffrey Critzer, Jul 10 2021

Keywords

Comments

The index of a nilpotent matrix A is the smallest positive integer k such that A^k = 0.
Define the co-index of an n X n matrix A to be n - index(A). Let X_n be the random variable that assigns to each nilpotent n X n matrix over GF(2) the value j in {0,1,...,n-1} of its co-index. Conjecture: lim_{n->inf} P(X_n = j) = Product_{i>=1}1-1/2^i * 2^((j-1)^2)/A002884(j). Moreover, for j < 2n, T(n,n-j) = A002884(n)/(A002884(j)*2^(n - (j-1)^2)). - Geoffrey Critzer, Jun 10 2025

Examples

			  1,
  1,    3,
  1,   21,     42,
  1,  315,   1260,   2520,
  1, 6975, 104160, 312480, 624960
		

Crossrefs

Cf. A083402 (main diagonal), A053763 (row sums), A002884, A048651.

Programs

  • Mathematica
    nn = 8;  q = 2;
    b[p_, i_] := Count[p, i];
    d[p_, i_] :=  Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];
    aut[deg_, p_] := Product[Product[ q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}];
    l = Level[Table[IntegerPartitions[n],  {n,  0,  nn}],  {2}];
    \[Gamma][n_, q_] := Product[q^n - q^i, {i, 0, n - 1}];
    g[u_,  v_,  deg_,  partitions_] := Total[Map[v^If[# == {},  0,  Max[#]] u^(deg Total[#])/aut[deg,  #] &, partitions]];
    Map[Select[#,  # > 0 &] &, Drop[Table[\[Gamma][n,  q],  {n,  0,  nn}] CoefficientList[     Series[g[u,  v,  1,  l],  {u,  0,  nn}],  {u,  v}],  1]] // Grid

Extensions

More terms from Geoffrey Critzer, Jun 10 2025

A346412 Triangular array read by rows: T(n,k) is the number of nilpotent n X n matrices over GF(2) having rank k, 0 <= k <= n-1, n >= 1.

Original entry on oeis.org

1, 1, 3, 1, 21, 42, 1, 105, 1470, 2520, 1, 465, 32550, 390600, 624960, 1, 1953, 605430, 36325800, 406848960, 629959680, 1, 8001, 10417302, 2768025960, 155009453760, 1680102466560, 2560156139520, 1, 32385, 172741590, 192779614440, 47809344381120, 2590958018073600, 27636885526118400, 41781748196966400
Offset: 1

Views

Author

Geoffrey Critzer, Jul 15 2021

Keywords

Examples

			Array begins
  1;
  1,    3;
  1,   21,     42;
  1,  105,   1470,     2520;
  1,  465,  32550,   390600,    624960;
  1, 1953, 605430, 36325800, 406848960, 629959680
T(2,0) = 1 because the zero matrix has rank 0.
T(2,1) = 3 because {{0,0},{1,0}}, {{0,1},{0,0}}, {{1,1},{1,1}} have rank 1.
		

References

  • G. Lusztig, A note on counting nilpotent matrices of fixed rank, Bull. London Math. Soc. v.8 (1976), no. 1, 77--80; MR0407050.

Crossrefs

Cf. A134057 (column k=1), A083402 (main diagonal), A053763 (row sums).

Programs

  • Mathematica
    nn = 10; q = 2; b[p_, i_] := Count[p, i];d[p_, i_] :=Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] :=  Product[Product[
       q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}];
    g[u_, v_] := Total[Map[v^(Total[#] - Length[#]) u^Total[#]/aut[1, #] &,
       Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]]];Map[Select[#, # > 0 &] &,Drop[Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[
         Series[g[u, v], {u, 0, nn}], {u, v}], 1]] // Grid

Formula

T(n,n-k) = A002884(n)*Product_{i=k..n-1}(1-1/2^i)/(A002884(k)*2^(n-k)*Product_{i=1..n-k}(1-1/2^i)) Theorem 6 in Fulman link. - Geoffrey Critzer, Dec 23 2024

A358433 Triangular array read by rows. T(n,k) is the number of n X n matrices over GF(2) with index k, n>=1, 1<=k<=n.

Original entry on oeis.org

2, 13, 3, 365, 105, 42, 43801, 12915, 6300, 2520, 21725297, 6412815, 3228960, 1562400, 624960, 43798198753, 12928608063, 6533019360, 3254791680, 1574899200, 629959680, 355991759464385, 105083758588095, 53109556520832, 26576858972160, 13227473387520, 6400390348800, 2560156139520
Offset: 1

Views

Author

Geoffrey Critzer, Nov 15 2022

Keywords

Comments

The index of a matrix A is the smallest positive integer such that rank(A^k) = rank(A^(k+1)).

Examples

			      2,
      13,       3,
     365,     105,      42,
   43801,   12915,    6300,    2520,
21725297, 6412815, 3228960, 1562400, 624960,
		

Crossrefs

Cf. A002416 (row sums), A348015 (column k=1), A083402 (main diagonal for n>1), A346214.

Programs

  • Mathematica
    nn = 6; q = 2; b[p_, i_] := Count[p, i];s[p_, i_] :=  Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];aut[deg_, p_] := Product[Product[q^(s[p, i] deg) - q^((s[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; \[Nu] = Table[1/n Sum[MoebiusMu[n/m] q^m, {m, Divisors[n]}], {n, 1, nn}];
    l[greatestpart_] :=Level[Table[IntegerPartitions[n, {0, n}, Range[greatestpart]], {n, 0,nn}], {2}];g1[u_, v_, deg_] := Total[Map[v ^(If[ Max[Prepend[#, 0]] == 0, 1, Max[Prepend[#, 0]]]) u^(deg Total[#])/aut[deg, #] &, l[nn]]]; Map[Select[#, # > 0 &] &,Drop[Table[Product[q^n - q^i, {i, 0, n - 1}], {n,0,nn}]CoefficientList[
      Series[g1[u, v, 1] g1[u, 1, 1]^(q - 1) Product[g1[u, 1, d]^\[Nu][[d]], {d, 2, nn}], {u, 0, nn}], {u, v}], 1]] // Grid

A358739 Triangular array read by rows. T(n,k) is the number of n X n matrices A over F_2 such that Sum_{phi} nullity(phi(A)) = k where the sum is over all monic irreducible polynomials in F_2[x] that divide the characteristic polynomial of A, n >= 1, 1 <= k <= n.

Original entry on oeis.org

2, 6, 10, 84, 210, 218, 5040, 19740, 15330, 25426, 1249920, 5780880, 6939660, 7604610, 11979362, 1259919360, 7533267840, 9297061200, 12276675180, 14280964866, 24071588290, 5120312279040, 34082078607360, 48312946523520, 78970351980240, 88215877158444, 112601184828930, 195647202043778
Offset: 1

Views

Author

Geoffrey Critzer, Nov 29 2022

Keywords

Examples

			Triangle begins
        2;
        6,      10;
       84,     210,     218;
     5040,   19740,   15330,   25426;
  1249920, 5780880, 6939660, 7604610, 11979362;
  ...
		

Crossrefs

Cf. A346222 (main diagonal), A083402 (1/2 * column 1), A002416 (row sums).
Showing 1-4 of 4 results.