cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A053763 a(n) = 2^(n^2 - n).

Original entry on oeis.org

1, 1, 4, 64, 4096, 1048576, 1073741824, 4398046511104, 72057594037927936, 4722366482869645213696, 1237940039285380274899124224, 1298074214633706907132624082305024, 5444517870735015415413993718908291383296, 91343852333181432387730302044767688728495783936
Offset: 0

Views

Author

Stephen G Penrice, Mar 29 2000

Keywords

Comments

Nilpotent n X n matrices over GF(2). Also number of simple digraphs (without self-loops) on n labeled nodes (see also A002416).
For n >= 1 a(n) is the size of the Sylow 2-subgroup of the Chevalley group A_n(4) (sequence A053291). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 30 2001
(-1)^ceiling(n/2) * resultant of the Chebyshev polynomial of first kind of degree n and Chebyshev polynomial of first kind of degree (n+1) (cf. A039991). - Benoit Cloitre, Jan 26 2003
The number of reflexive binary relations on an n-element set. - Justin Witt (justinmwitt(AT)gmail.com), Jul 12 2005
From Rick L. Shepherd, Dec 24 2008: (Start)
Number of gift exchange scenarios where, for each person k of n people,
i) k gives gifts to g(k) of the others, where 0 <= g(k) <= n-1,
ii) k gives no more than one gift to any specific person,
iii) k gives no single gift to two or more people and
iv) there is no other person j such that j and k jointly give a single gift.
(In other words -- but less precisely -- each person k either gives no gifts or gives exactly one gift per person to 1 <= g(k) <= n-1 others.) (End)
In general, sequences of the form m^((n^2 - n)/2) enumerate the graphs with n labeled nodes with m types of edge. a(n) therefore is the number of labeled graphs with n nodes with 4 types of edge. To clarify the comment from Benoit Cloitre, dated Jan 26 2003, in this context: simple digraphs (without self-loops) have four types of edge. These types of edges are as follows: the absent edge, the directed edge from A -> B, the directed edge from B -> A and the bidirectional edge, A <-> B. - Mark Stander, Apr 11 2019

Examples

			a(2)=4 because there are four 2 x 2 nilpotent matrices over GF(2):{{0,0},{0,0}},{{0,1},{0,0}},{{0,0},{1,0}},{{1,1,},{1,1}} where 1+1=0. - _Geoffrey Critzer_, Oct 05 2012
		

References

  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 521.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 5, Eq. (1.1.5).

Crossrefs

Programs

Formula

Sequence given by the Hankel transform (see A001906 for definition) of A059231 = {1, 1, 5, 29, 185, 1257, 8925, 65445, 491825, ...}; example: det([1, 1, 5, 29; 1, 5, 29, 185; 5, 29, 185, 1257; 29, 185, 1257, 8925]) = 4^6 = 4096. - Philippe Deléham, Aug 20 2005
a(n) = 4^binomial(n, n-2). - Zerinvary Lajos, Jun 16 2007
a(n) = Sum_{i=0..n^2-n} binomial(n^2-n, i). - Rick L. Shepherd, Dec 24 2008
G.f. A(x) satisfies: A(x) = 1 + x * A(4*x). - Ilya Gutkovskiy, Jun 04 2020
Sum_{n>=1} 1/a(n) = A319016. - Amiram Eldar, Oct 27 2020
Sum_{n>=0} a(n)*u^n/A002884(n) = Product_{r>=1} 1/(1-u/q^r). - Geoffrey Critzer, Oct 28 2021

A358433 Triangular array read by rows. T(n,k) is the number of n X n matrices over GF(2) with index k, n>=1, 1<=k<=n.

Original entry on oeis.org

2, 13, 3, 365, 105, 42, 43801, 12915, 6300, 2520, 21725297, 6412815, 3228960, 1562400, 624960, 43798198753, 12928608063, 6533019360, 3254791680, 1574899200, 629959680, 355991759464385, 105083758588095, 53109556520832, 26576858972160, 13227473387520, 6400390348800, 2560156139520
Offset: 1

Views

Author

Geoffrey Critzer, Nov 15 2022

Keywords

Comments

The index of a matrix A is the smallest positive integer such that rank(A^k) = rank(A^(k+1)).

Examples

			      2,
      13,       3,
     365,     105,      42,
   43801,   12915,    6300,    2520,
21725297, 6412815, 3228960, 1562400, 624960,
		

Crossrefs

Cf. A002416 (row sums), A348015 (column k=1), A083402 (main diagonal for n>1), A346214.

Programs

  • Mathematica
    nn = 6; q = 2; b[p_, i_] := Count[p, i];s[p_, i_] :=  Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];aut[deg_, p_] := Product[Product[q^(s[p, i] deg) - q^((s[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; \[Nu] = Table[1/n Sum[MoebiusMu[n/m] q^m, {m, Divisors[n]}], {n, 1, nn}];
    l[greatestpart_] :=Level[Table[IntegerPartitions[n, {0, n}, Range[greatestpart]], {n, 0,nn}], {2}];g1[u_, v_, deg_] := Total[Map[v ^(If[ Max[Prepend[#, 0]] == 0, 1, Max[Prepend[#, 0]]]) u^(deg Total[#])/aut[deg, #] &, l[nn]]]; Map[Select[#, # > 0 &] &,Drop[Table[Product[q^n - q^i, {i, 0, n - 1}], {n,0,nn}]CoefficientList[
      Series[g1[u, v, 1] g1[u, 1, 1]^(q - 1) Product[g1[u, 1, d]^\[Nu][[d]], {d, 2, nn}], {u, 0, nn}], {u, v}], 1]] // Grid

A384038 Number of 2n X 2n matrices M over GF(2) such that the column space of M is equal to the null space of M.

Original entry on oeis.org

1, 3, 210, 234360, 4047865920, 1092146608143360, 4650098142288472473600, 314462403262051153026062745600, 338960040818652280796119613717033779200, 5834618256563872511581456247120956565738854809600, 1605370810586153268821245248112723240374305354675084328960000
Offset: 0

Views

Author

Geoffrey Critzer, May 17 2025

Keywords

Comments

Let M be a 2n X 2n matrix over GF(2) such that the column space of M is equal to the null space of M. Then M is idempotent and nullity(M) = n and index(M) = 2. If M' is similar to M then the column space of M' equals the null space of M'. Moreover, all such matrices are in the same similarity class (see Hoffman link).

Examples

			a(1) = 3 because there are 3 matrices of size 2 X 2 over GF(2) with the desired property: {{0, 0}, {1, 0}}, {{0, 1}, {0, 0}}, {{1, 1}, {1, 1}}.
		

Crossrefs

Programs

  • Mathematica
    q = 2; b[p_, i_] := Count[p, i]; d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] := Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; Table[Product[2^(2 k) - 2^i, {i, 0, (2 k) - 1}]/aut[1, Table[2, {k}]], {k,0, 10}]

Formula

a(n) = A002884(n)*A006098(n).
Showing 1-3 of 3 results.