A083479 The natural numbers with all terms of A033638 inserted.
0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 13, 13, 14, 15, 16, 17, 17, 18, 19, 20, 21, 21, 22, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54, 55, 56, 57, 57
Offset: 0
Examples
There are three 1's, one from the natural numbers and two from A033638. When viewed as an array the sequence begins: 0 1 1 1 2 2 3 3 4 5 5 6 7 7 8 9 10 10 11 12 13 13 14 15 16 17 17 18 19 20 21 21 22 23 24 25 26 26 27 28 29 30 ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Haskell
a083479 n = a083479_list !! n a083479_list = m [0..] a033638_list where m xs'@(x:xs) ys'@(y:ys) | x <= y = x : m xs ys' | otherwise = y : m xs' ys -- Reinhard Zumkeller, Apr 06 2012
-
Magma
[n eq 0 select 0 else (n+2)-Ceiling(Sqrt(4*n)): n in [0..100]]; // G. C. Greubel, Feb 17 2024
-
Mathematica
Table[(n + 2) - Ceiling@ Sqrt[4 n] - 2 Boole[n == 0], {n, 0, 73}] (* Michael De Vlieger, Sep 05 2017 *)
-
Maxima
a(n):=((n+2)-ceiling(sqrt(4*n))); /* Gregory R. Bryant, Apr 01 2013 */
-
Python
from math import isqrt def A083479(n): return n+1-isqrt((n<<2)-1) if n else 0 # Chai Wah Wu, Jul 28 2022
-
SageMath
[(n+2)-ceil(sqrt(4*n)) -2*int(n==0) for n in range(101)] # G. C. Greubel, Feb 17 2024
Formula
a(n) = (n+2) - ceiling(sqrt(4*n)), for n > 0. - Gregory R. Bryant, Apr 01 2013
From Wesley Prosser, Sep 06 2017: (Start)
a(n) = (n+2) - A027709(n)/2.
a(n) = (n+2) - A027434(n).
a(n) = (2n+2) - A049068(n).
a(n) = (2n+3) - A080037(n).
(End)
Extensions
Edited and extended by David Wasserman, Nov 16 2004
Comments